
Crash Graphs: An Aggregated View of Multiple Crashes to Improve Crash Triage  
Sunghun Kim* 

Hong Kong University of Science and Technology  
Hong Kong 

hunkim@cse.ust.hk 
 

Thomas Zimmermann, Nachiappan Nagappan 
Microsoft Research  

Redmond, WA, USA  
{tzimmer, nachin}@microsoft.com

Abstract—Crash reporting systems play an important role in 
the overall reliability and dependability of the system helping 
in identifying and debugging crashes in software systems 
deployed in the field. In Microsoft for example, the Windows 
Error Reporting (WER) system receives crash data from users, 
classifies them, and presents crash information for developers 
to fix crashes. However, most crash reporting systems deal 
with crashes individually; they compare crashes individually to 
classify them, which may cause misclassification. Developers 
need to download multiple crash data files for debugging, 
which requires non-trivial effort. In this paper, we propose an 
approach based on crash graphs, which are an aggregated 
view of multiple crashes. Our experience with crash graphs 
indicates that it reduces misclassification and helps identify 
fixable crashes in advance.  

Keywords-component; crash; graph; triaging; network 

I. INTRODUCTION 
Crash reporting systems 1  such as Windows Error 

Reporting (WER) [13], Mozilla Crash Stats [15], and Apple 
CrashReporter [3] have been widely deployed in practice. 
The crash reporting systems help organizations determine the 
overall reliability of their software systems in the field.  

The crash reporting systems collect crash related data, 
classify them, and present the information to developers to 
fix crashes [9, 11]. For example, WER receives crash stack 
traces from users in the field. Then, WER identifies crash 
root cause(s) using heuristics (analyzing the traces using 
machine learning/pattern analysis algorithms) and put similar 
crashes into one bucket. WER counts crashes per bucket to 
decide which buckets to fix first. If the number of crash 
reports in a bucket exceeds a threshold value, then WER 
automatically reports such crashes as bugs. Developers 
investigate these bug reports and fix the crashes using the 
collected crash data from users in the field. 

This practice helps developers quickly identify important 
and frequent crashes and fix them. Crash data provided by 
users is useful for developers to identify the root causes of 
the crashes and as a result debugging crashes is easier. 

However, most crash reporting systems including WER 
deal with crashes individually rather than aggregating them 
into a combined view [9]. This individual crash based 
technique is computationally efficient for data collection but 
difficult to analyze the vast repositories of data. For example, 
WER uses individual crash data to bucket crashes. When 
considering crash data one by one, WER may misclassify 
crashes.  

                                                             
* Sunghun Kim was a visiting researcher with the Empirical Software 
Engineering Research Group (ESE), Microsoft Research in the 
summer of 2010 when this work was carried out. 

When WER reports a crash as a bug, it provides multiple 
crash data files to developers. Then, to investigate and debug 
one crash bug, developers need to download multiple data 
files one by one, since crash bug reports include multiple 
crash data files. This process requires non-trivial effort. This 
is similar in spirit to how other crash collection systems (like 
Mozilla) work [11]. 

In this paper, we propose Crash Graphs which capture 
multiple crashes at once and provide an aggregated view of 
multiple crashes in the same bucket. These crash graphs are 
useful for developers to get high-level information about 
crashes in the same bucket. Crash graphs are also useful for 
crash classification since they include aggregated 
information of crashes. 

We evaluate crash graphs using two Microsoft products, 
Microsoft Windows and Microsoft Exchange Server. First, 
we use crash graphs to detect duplicate crash-bug reports. 
Our crash graphs identify duplicate bug reports with 71.5% 
precision and 62.4% recall. Second, we predict fixable 
crashes using features from crash graphs. A machine-
learning algorithm using crash graph features predicts fixable 
crashes with 72~80% precision, which is useful for 
automatic crash triaging.  

A. Contributions 
Our paper makes the following contributions: 

• Crash Graphs: We propose an aggregated view of 
multiple crashes in the same bucket. 

• Experience: We present several experiences with crash 
graphs, which experimentally show the usefulness of 
crash graphs for crash triage tasks, more specifically, 
predicting fixable crashes and detecting duplicate 
reports. 

Overall, our experiences in practice reveal the crash graph 
approach, an aggregated view of crashes, is efficient for 
crash triaging.  

B. Section Guide 
In the remainder of the paper, we start by presenting the 

background of crash reporting systems in Section II. Section 
III presents our crash graph building algorithms and 
hypothesizes the usefulness of crash graphs. Our crash graph 
experience is presented in Section IV and its limitations are 
discussed in Section V. Section VI surveys related work and 
Section VII concludes. 

II. BACKGROUND  
In this section, we present the WER system, the common 

crash debugging process using WER, and WER challenges. 



A. Windows Error Reporting System 
Software crashes are manifestations of errors from actual 

field usage. Developers spend tremendous resources and 
efforts to fix crash bugs before releasing products. However, 
often, released programs include bugs/errors (due to various 
factors ranging from incorrect code to improper interaction 
with third party applications), and some of the bugs manifest 
as crashes in the field.  

To collect crash information from the field, crash-
reporting systems such as WER, Apple CrashReporter, and 
Mozilla crash stats have been proposed and deployed widely. 
Most of these systems have three modules: (1) collecting 
crash information from clients, (2) classifying crashes in the 
server side, and (3) presenting the crashes to developers to 
facilitate debugging.  

Figure 1 shows the WER system overview.  
 
 

 
Figure 1.  WER System overview 

Collecting Crashes: Windows OSs such as Windows XP 
or Windows 7 include a WER client in the OS level. Some 
programs such as Microsoft Office have their own WER 
clients. When a crash occurs in the field, the WER client 
shows a popup screen and allows users the option to send 
crash information as shown in Figure 2. If users accept, the 
WER client collects crash related data such as stack traces, 
static variables and register values, and packs this 
information as a minidump file. This minidump file is sent to 
the WER server. 

 

 
 

Figure 2.  WER client popup screen  

Classification: The WER server classifies the minidump 
files received from WER clients. First, WER server identifies 
the names of crashed modules by resolving Windows 
Symbols which are similar to debug symbols [9]. Then, using 
heuristics called bucketing algorithms [9], the WER server 

classifies crashes based on causes and collects similar 
crashes in the same bucket. This bucketing process is a core 
part of WER. Buckets are the basic unit of crash triaging. 
WER counts crash hits per bucket to determine crashes 
occurring most frequently. After crash hits of buckets exceed 
a predefined threshold value, WER automatically reports the 
bucket to developers.  

 
Presenting Crashes: WER presents highly hit buckets 

and their crash data as bug reports, called auto-crash bugs. 
WER can identify crashed modules by resolving Windows 
Symbols and then mapping the owners of the modules. 
When WER reports auto-crash bugs, WER assigns the bugs 
to the module owners. 

These bug reports include statistics such as hit counts, 
client distributions, and crashed software versions. The most 
important information in bug reports is minidump files 
which includes crash stack traces. Usually an auto-crash bug 
report includes more than one minidump file, since WER 
collects multiple minidump files from multiple crashes for 
each bucket.  

 

B. WER Common Debugging Process  
Once WER has automatically reported crash bugs and 

assigned them to developers, developers start debugging by 
reading the bug report and analyzing the statistics (frequency 
of crashes) associated with the bug report. Then developers 
download multiple minidump files and investigate the 
crashes using debugging tools such as windbg 2  and 
“!Analyzer” [9]. Often, stack trace information in minidump 
files is very useful to fix the corresponding crashes [6, 9].  
 

C. Challenges 
In this section, we briefly discuss challenges in crash 

reporting systems.  
 
Second-bucket problem: In general, the WER bucketing 

algorithm, based on over 500 heuristics [9] (we do not 
discuss the WER process in detail here as it is not the goal of 
the paper and only briefly touch on it given reference [9] 
which discusses it in detail) works well and helps developers 
identify crash causes quickly. However, it is possible that the 
bucketing algorithm puts crashes caused by the same bug 
into different buckets; this is called the second-bucket 
problem. For MS Office products, about 30% of crashes 
have this second bucket problem [9]. 

This second bucket problem yields duplicate bug reports. 
Since WER regards crashes in different buckets as different 
types of crashes, they become different bug reports, i.e. 
duplicated bug reports. These duplicated bug reports 
significantly consume developers’ resources. Developers 
often realize the existence of duplicates only after putting 
significant efforts to investigate the reports and the 
corresponding crashes [16, 17].  

 
                                                             

2http://www.microsoft.com/whdc/devtools/debugging/default.mspx  

crash

...

...

...

minidumps buckets

...

...

...

auto-crash
bug reports

WER ServerClient Bug reports

bucketing



Manual inspection of multiple minidump files: 
Multiple minidump files provided in auto-crash bug reports 
constitute useful information for debugging crashes. Though 
the cause of all crashes (in the same bucket) is the same, it is 
possible that information in different minidump files in the 
same bucket differ. These variations are very useful for 
developers to understand the context of the crashes and to 
identify the root cause (bug) for the crashes. For this reason, 
WER usually provides 10 to 20 minidump files per crash. 

However, in the current practice, developers need to 
download multiple minidump files one by one and analyze 
them. This is a labor-intensive task. In addition, it is possible 
that one minidump file by itself does not have enough 
information to identify the root cause of the crash. 

We propose Crash Graphs to address these challenges. 

III. CRASH GRAPH 
Crash graphs combine all crash traces in one bucket and 

provide an aggregated view of all crashes in a bucket. Since 
crashes in the same bucket share the main cause, crash 
graphs provide a high-level information of all crash traces in 
detail. In addition, crash graphs can show trace variations, 
which help developers understand the context of the crashes 
and identify the bugs. In section III.A, we present the crash 
graph construction technique and in section III.B, our 
hypotheses evaluating the usefulness of crash graphs. 

A. Graph Construction 
We construct crash graphs from crash traces in minidump 

files, and the frames (functions) in crash traces are the first 
class element of crash graphs; they become nodes in the 
graphs. Their call relations become edges in the graphs. 

To construct a crash graph from multiple crash traces, the 
first step is to decompose each crash trace to two-frame 
elements. From a crash trace A→B→C→D shown in Figure 
3, we get three two-frame elements, A→B, B→C, and C→D 
by decomposing the crash trace. In the same manner, we 
decompose all crash traces in the same bucket.  
 

 
Figure 3.  A crash graph example from multiple crash traces. 

The frames in a two-frame element become two nodes in 
the graph. Then, we add an edge between these two nodes in 
the graph. We continue this process for all decomposed 
elements. This graph construction technique is inspired by 
bug tossing graphs [10], which decompose tossing 
(reassignment) relations and construct graphs using 
decomposed elements.  

Since some frames may appear more than one time, 
nodes and edges in a crash graph can be weighted. For 
example, frame A appears 2 times in traces in Figure 3. 
Therefore weight of node A in the crash graph is 2. 
Similarly, since edge C→D appears 2 times, the edge weight 
is 2.  

In this paper, we use both weighted and un-weighted 
crash graphs for bug triaging tasks. 

B. Hypotheses 
Crash graphs combine all crashes in the same bucket and 

show the entire view of all crashes. We investigate if crash 
graphs can be used to detect the second bucket problems and 
predict fixable crashes in advance.  

Specifically, we hypothesize the following:  
 
Hypothesis 1: Crash graphs can detect duplicate crash 

reports (the second bucket problem) with high accuracy. 
Currently, WER compares individual crash traces to bucket 
them. Since crash graphs combine all traces together, 
combined crashes are more efficient in detecting the second 
bucket problem and thus in identifying duplicated auto-crash 
bug reports. 
 

Hypothesis 2: Crash graphs can predict if a given crash 
will be fixed. Since crash graphs capture properties of all 
crashes in one bucket, graph features can be useful to predict 
fixable crashes. 

IV. EXPERIMENTS  
This section presents our crash graph experience of 

applying the graphs for crash triage tasks.   

A. Duplicate Detection 
WER uses bucketing algorithms based on over 500 

heuristics to identify causes of crashes and to classify the 
crashes into buckets based on their causes [9]. Each bucket is 
a basic unit for crash triage, i.e. prioritizing crashes based on 
hit counts in each bucket.  

In most cases, WER bucketing algorithms work 
reasonably well. However, due to non-deterministic 
properties of crashes, those caused by the same bugs may 
also produce slightly or (sometimes) significantly different 
crash traces. As a result, the bucketing algorithms put such 
crashes into different buckets. This second bucket problem 
leads to duplicated auto-crash bug reports as discussed in 
Section II.C. 

We apply our crash graphs to automatically detect 
duplicate auto-crash bug reports. First, we propose a crash 
graph similarity measure to detect duplicates in Section 
IV.A.1 and show the experimental results using Windows 
OS bug reports in Section IV.A.2. Section IV.A.3 discusses 
the results and the role of crash graphs in detecting 
duplicates.   

 
1) Measure 

Since a crash graph represents multiple crashes in one 
bucket, our approach is to compare two crash graphs from 
two bug reports to determine if they are duplicates.  

A B C D

A F G D

C D F G

A

B

C

D

F

G

crash trace 1

crash trace 2

crash trace 3

(b) crash graph from trace 1, 2, and 3(a) crash traces

A

B

B

C

C

D

A

F

F

G

G

D

C

D

D

F

F

G

(b) decomposing



Graph similarity measures have been widely proposed 
and used in various domains including face recognition [19], 
text mining [14], and social network analysis [12]. 

In this paper, we use the following graph subset 
similarity measure to compare two crash graphs G1 and G2: 

Sim(G1,G2 ) =
E1!E2

min( E1 , E2 )
 

where E is the set of edges in G. 
Basically, this equation measures if a smaller graph is a 

subset of the bigger graph. In this equation, we ignore the 
node or edge weights. 

 
2) Experiments 

We measure the similarity of two given bug reports using 
the equation shown in Section IV.A.1. If the similarity is 
above a threshold, we assume the two bug reports are 
duplicates.  

To evaluate the similarity measure using crash graphs, 
we use auto crash-bug reports from the Windows OS project. 
These bug reports include duplicates due to the second 
bucket problem. These duplicates are manually marked by 
Windows OS developers which allows us to examine the 
efficiency of our method. In total, we use ‘n’ (anonymized 
for confidentiality) bug reports from Windows OS projects. 
Among them, 13.3% of the reports are duplicates. We apply 
the crash graph construction algorithm and the similarity 
measure, and check if our approach can detect these 
manually marked duplicates.  

Since our approach compares similarity of two given 
crash graphs (bug reports), we conduct pair-wise 
comparisons for all bug reports. As shown in Table I, there 
are n*(n-1)/2 pairs for n bug reports. Among these pairs, 
only 0.32% are duplicated pairs.  

To evaluate the performance of duplicate detection, we 
use recall and precision measures [1].  

The recall for a given similarity threshold denotes: 

Recall (similarity) = 
MD!PDsimilarity

MD
 

where |MD| is the number of manually marked duplicates, 
PDsimilarity is predicted duplicates based on the given 
threshold value, and |MD∩PDsimilarity| is the number of 
correctly predicted duplicates.  

The precision for a given similarity threshold value is: 

Precision (similarity) = 
MD!PDsimilarity

PDsimilarity

. 

 

In general, identifying only 0.32% of the entire 
population is a challenging problem. The precision of 
existing approaches for detection of duplicate bug reports is 
around 40~60% [16, 17]; recall is typically very low or not 
measured.  

TABLE I.  WINDOWS OS BUG REPORTS FOR DUPLICATED BUG 
DETECTION 

Name Value 

# of bug reports n 
# of duplicated bugs 13.3% 
# total bug pair  n*(n-1)/2 
# of duplicated bug pair 0.32% 
# of non-duplicated bug  99.68% 

 

Note that sophisticated bucketing algorithms are already 
applied and missed the duplicates used in our experiment 
data. 

Table II shows the precision and recall of detecting 
duplicates using the crash graph similarity measure. The 
precision and recall vary based on the similarity threshold 
values. For example, when the similarity threshold is set to 
0.95, the recall and precision is around 60%. On setting the 
threshold to 0.98, the precision is over 70% while recall 
remains around 60%.  

 

TABLE II.  DUPLICATE DETECTION PRECISION AND RECALL FOR SELECTED 
SIMILARITY THRESHOLD VALUES. 

Similarity Threshold Precision Recall 

1 70.3 58.8 
0.99 71.5 62.4 
0.98 71.0 63.6 
0.97 68.4 64.2 
0.96 65.0 64.2 
0.95 61.6 64.2 

 

The low recall is due to non-deterministic behaviors of 
bugs and crashes. It is possible that the same bugs can 
manifest completely different crash traces.  

Even if one graph is completely a sub-graph of another 
(similarity is 1), the precision will not reach 100%. This is 
due to manual duplication marking, since the developer may 
neglect or forget to mark duplicates in the bug reporting 
system. In this case, we cannot decide if our prediction is 
correct, so we conservatively assume it is a wrong detection. 
Thus, our precision will not reach 100%, even if we only 
consider the exact sub-graphs (similarity is 1). 

Figure 4 shows the precision-recall curve for various 
threshold values. Overall, recall and precision are around 
60%. By sacrificing recall, precision can be increased to over 
70%. Our experimental results indicate crash graphs can 
detect duplicated bug reports with reasonable accuracy. Note 
that previous approaches [16, 17] yield around 40-60% 
precision. 
 



 
Figure 4.  Precision-recall curve for duplicate detection. 

 
3) Discussion 

In this section, we discuss why crash graphs can 
efficiently detect duplicated reports missed by sophisticated 
bucketing algorithms. One simple explanation is that the 
crash graph is an aggregation of all crashes in a bucket. 
Comparing all crashes using crash graphs is more efficient 
than comparing crashes one by one.  

The current WER bucketing algorithms compare and 
classify crashes one by one. When a client sends a new 
crash, WER creates a new bucket and makes the first crash 
as the representative for the bucket. If there is another new 
crash, WER compares the crash with representative crashes 
in each bucket to decide if the new crash belongs to any of 
the existing buckets.  

This comparison is computationally efficient, but may 
cause the second bucket problem. As shown in Figure 5, 
suppose Trace 1 is the representative crash for Bucket 1. 
Later, Trace 2 and 3 are collected from clients. Suppose the 
trace similarity threshold is 90% – if the similarity of a new 
crash and Trace 1 is over 90%, the new crash will be put in 
Bucket 1. Suppose the trace similarity between Trace 1 and 
2, and Trace 1 and 3 are over 90%. Then, Trace 2 and 3 will 
be put in Bucket 1.  

However, since WER only measures similarity with the 
representative crash, it is possible that trace X is similar to 
one of the other crashes in the bucket, but not similar enough 
with the representative crash to be put in Bucket 1. This may 
result in a second bucket problem as shown in Figure 5.  

However, since crash graphs compare all traces, they are 
more effective for avoiding the second bucket problem. 

 

 
Figure 5.  Bucketing algorithms which compare crash traces one by one. 

Another reason of the second bucket problem is partial 
crash traces. It might be possible that only partial crash 
traces are sent to the WER server. In this case, measuring 
partial trace similarity may cause the second bucket problem. 

For example, suppose we have two traces in Bucket 1 as 
shown in Figure 6. Suppose a client sent a new crash trace to 
the WER server. Unfortunately, it is a partial trace, or due to 
the missing symbol information, we can figure out only 
partial frame names. If we just compare similarities between 
two crash traces, the new trace will be put in a new bucket, 
since it is not similar to Trace 1 or Trace 2 in Bucket 1. 

 

 
Figure 6.  Second bucket problem due to partial crash trace. Crash graphs 

do not suffer from this issue. 

However, when we construct a crash graph from Bucket 
1, and compare similarity using the crash graph, Trace 3 is a 
complete sub-graph of the crash graph from Bucket 1. Our 
crash graph approach identifies them as the same crash. 

B. Predicting Fixable Crashes 
In this section, we investigate if crash graphs are useful 

to predict fixable crashes, since we believe crash graphs can 
capture crash properties such as fixability. Some crashes will 
not be fixed for various reasons. For example, a crash can 
occur due to third party software bugs or specific hardware 
issues. Often, identifying the fixability of a given crash 
requires manual effort. If we can predict fixable crashes in 
advance with reasonable accuracy, it helps developers triage 
crashes.  

We first collect auto-crash bug repots from Windows 7 
and Exchange 14. From each bug report, we construct a 
crash graph and extract (machine learning) features from 
each graph. We use the features to train a model to predict if 
a given auto-crash bug report is fixable or not.  

 
1) Subjects and Features 

For our experiments, we use auto-crash bugs from 
Windows 7 and Exchange 14 obtained from field crashes. 
From each auto-crash bug report, we construct weighted 
crash graphs as explained in Section III.A. From crash 
graphs, we extract the following machine learning features:  

Simple graph complexity: We first compute the graph 
complexity and density [18]. Although graph complexity is 
extracted for graphs in general, it is possible the complexity 
of a crash graph may capture the properties of the crash. We 
use common graph complexity measures such as the 

trace1

trace2 trace x

bucket1

trace3
...

80% similar

90% similar

A B C D

D E F G

C D E F

H

Trace 1

Trace 2

Trace 3

bucket 1

bucket 2

A

B

C

D

E

F

G

H

C

D

E

F

crash graph from bucket 1 crash graph from bucket 2

Similarity = 0 

Similarity = 1 



node/edge count and max in/out of nodes. Since we are using 
weighted crash graphs for these experiments, we also use 
weight related measures such as max/min weights of nodes 
and edges, and min/max out weight sums. Table III shows 
and explains selected features. 

Distance-based complexity: Besides the simple graph 
complexity, we extract distance-based complexity measures 
based on the shortest distance between all pairs of crash 
graph nodes using the Floyd-Warshalls algorithm [7]. The 
initial distance between two connected nodes is set to 1. 
Then, we compute distance-based complexities such as 
eccentricity, density and radius. For example, the eccentricity 
of a node v is the greatest distance between v and any other 
node. We aggregate all eccentricities with minimum 
(=radius), maximum (=diameter) and average. Table III 
describes selected features, while detailed measures are 
described in [21]. 

Bug metadata: Bug metadata is widely used to classify bug 
reports [2, 10]. In our experiment, we extract features from 
auto-crash bug reports such as hit count, milestone, severity 
and priority. The hit count is very important to prioritize 
crashes to fix. The milestone (version) is also a good feature 
candidate, since developers care more/less about some 
milestones or releases. In addition, severity and priority are 
used as features. 

We compare our crash graph feature based prediction 
performance to a baseline approach which uses the bug 
metadata features. 

 

TABLE III.  SELECTED MACHINE LEARNING FEATURES TO PREDICT 
FIXABLE BUGS 

Group Features Explanation 

Bug  
meta data  

Hit Count Crash hit count 

Milestone Milestone of crashed program 

Severity Severity of the crash 

Priority Priority of the crash 

Crash graph 
features 

Node/edge 
count Count of nodes and edges 

Max in/out The number of incoming/outgoing 
edges of nodes 

In/out ratio Edge in/out ratio 

Eccentricity Average distances between nodes 

Density Ratio of the number of edges and 
the number of possible edges 

Diameter Max length (longest shortest path) 

Radius  Node radius 

 

 

2) Experiments 
Our approach is to train a machine learner using features 

described in Section IV.B.1. We use decision tree [1] as our 
machine learner, which is widely used to triage bug reports 
and predict software defects.  

From our subjects Windows 7 and Exchange 14, we 
construct a corpus by extracting features and labels (“fixed” 
or “won’t fix”). For the evaluation, we use random splits: to 
train a machine learner, we randomly select 2/3 of instances 
and use them as a training set; the remaining 1/3 is used as a 
testing set. To avoid label population bias in the training set, 
we make sure that the instances in the training set have 50% 
fixed bugs and 50% of won’t fix bugs by randomly removing 
some instances in the training set. To also avoid sampling 
bias, we run this experiment 100 times and compute the 
average performance. 

To measure the model performance, we use standard 
measures including precision, recall and F-measure [1, 20]. 
Applying a machine learner to our problem can result in four 
possible outcomes: the learner predicts (1) a fixable crash as 
fixable (f → f); (2) a fixable crash as won’t fix (f → w);  (3) 
a won’t fix crash as fixable (w → f); and (4) a won’t fix 
crash as won’t fix (w → w). These outcomes can be then 
used to evaluate the classification with the following three 
measures: 

Precision: the number of crashes correctly classified as 
fixable (Nf→f) over the number of all methods classified as 
fixable. 

Precision   P(fix) = 

! 

N f" f

N f" f + Nw" f

 

Recall: the number of crashes correctly classified as fixable 
(Nf→f) over the total number of fixable crashes. 

Recall   R(fix) = 

! 

N f" f

N f" f + N f"w

 

F-measure: a composite measure of precision and recall. 

F-measure (fix) = 

! 

2P( fix)R( fix)
P( fix) + R( fix)

 

 

TABLE IV.  FIXABLE CRASH PREDICTION RESULTS  

Subjects/Features Precision Recall F-measure 

Ex
ch

an
ge

 1
4 Bug  

meta data 
80 57.2 66.3 

Crash graph 79.5 69.6 74.5 
All features 80 70.6 74.7 

W
in

do
w

s 7
 Bug  

meta data 
69.9 66.1 68.6 

Crash graph 72.1 60.3 65.0 
All features 71.8 61.2 65.4 



Table  IV shows the average recall, precision and F-
measure. For Exchange 14, F-measure of fixable crashes is 
around 75% using only crash graph features. However, F-
measure using only bug meta-data is around 66%. When we 
use all features, the F-measure is around 75%. These results 
indicate that crash graph features are informative to predict 
fixable crashes.  

For Windows 7, F-measure for bug meta-data features is 
around 69%, while F-measure for crash graph features is 
65%. The F-measure using crash graph features is slightly 
lower. One possible explanation is that the crash fix process 
of Windows 7 is hit-count oriented. If a crash has a higher hit 
count, it is likely to be fixed. The hit count is one of bug 
meta-data features.  

However, even without using the hit count, crash graph 
features can predict fixable crashes almost as well as when 
using the hit count. This indicates crash graph features are 
informative to predict fixable crashes when hit count is not 
available or not reliable. Overall, these results show that 
crash graph features are informative to predict fixable 
crashes in advance.  

V. THREATS TO VALIDITY  
We identify the following threats to validity: 
 
Subject selection bias: We use only industrial project data 
for our experiments. Open source projects may have 
different crash properties and the same experiments on open 
source projects may yield different results. However, we 
could not find any open source project which had a crash 
reporting system with bucketing algorithms and auto-crash 
bug reporting features. 

Data selection bias:  In our experiments, we use partial 
auto-crash bug reports. Since Microsoft does not store all 
crash traces, only partial auto crash bug reports were 
available for our study. However, despite this fact given the 
wide deployment of Windows and Exchange the stored data 
traces are substantially large. 

VI. RELATED WORK 
Glerum et al. present ten years of debugging experience-

using WER including designing WER, bucket algorithms, 
common debugging practice, and their challenges [9]. WER 
uses the server-client model to collect crash minidump from 
clients, and their bucketing algorithms classify crash 
information using over 500 heuristics such as crashed point 
and trace similarity. WER has significantly improved crash-
debugging process by permitting developers to identify 
crashes quickly and providing useful information for 
debugging. Our crash graph approach is on top of WER, the 
classified buckets, and auto-crash bug reports. 

However, WER may misclassify some crashes, which 
causes the second bucket problem and yields duplicated 
auto-crash bug reports. Our crash graph approach can 
efficiently detect duplicated reports by comparing the whole 
crashes rather than comparing them one by one as discussed 
in Section IV.A.3. 

Research has also focused on identifying the causes of 
crashes. Ganapathi et al. [8] analyzed and collected 
Windows XP kernel crash data for a sample population and 
found out that OS crashes are predominantly caused by 
poorly-written device driver code. 

Bartz et al. propose a stack trace similarity measure 
based on callstack edit distance with tuned edit penalties [5]. 
They show that their approach is superior to previous 
measure such as the Euclidian distance for detecting similar 
crashes. However, since their approach is based on crash 
trace-to-crash similarity measures, they have inevitable 
limitations discussed in Section IV.A.3 including the partial 
trace issue.    

Arnold et al. proposed combining execution traces to 
facilitate program understanding [4]. Their trace combining 
approach is similar to our crash graph. However, they 
combine traces from execution traces rather than multiple 
crash traces. In addition, their goal is program understanding, 
and our goal is efficient crash triaging. 

Wang et al. and Runeson et al. propose techniques to 
detect duplicated bug reports using text similarity or 
execution trace similarity [16, 17]. Usually the accuracy of 
text similarity based duplicate detection is around 40~50%. 
Wang et al. generate artificial execution traces and use them 
to detect duplicates. However, these traces are not collected 
in the field. Still the accuracy is around 40~60%, since they 
also compare traces one by one, while our crash graph 
approach compares the entire crashes using the sub graph 
similarity measure.  

VII. CONCLUSIONS  
Crash reporting systems are common these days in most 

widely deployed software systems. Yet, there has been little 
research on how these crashes are analyzed to fix the 
problems. In this paper, we propose the use of crash graph, 
an aggregated form of multiple crashes, and show its 
efficacy. Crash graphs are more efficient to identify 
duplicate auto-bug reports than comparing individual stack 
traces. In addition, we show that machine-learning features 
of crash graphs are informative to predict fixable crashes. 

Crash reporting systems have become more important to 
identify crashes and provide useful debugging information 
for developers. Our experience indicates it is important to 
use an aggregated form of crashes such as crash graphs for 
classifying or triaging crashes rather than using or comparing 
individual crashes. 

As part of our future work, we have started a deployment 
to actual engineers at Microsoft to determine the engineering 
efficacy and utility of crash graphs. We constructed crash 
graphs for fixed crashes from Microsoft Exchange 14. Then 
we presented the crash graphs to the corresponding 
developer who fixed the crash. So far we have received very 
promising and enthusiastic support for our work, for example 
we received the following feedback from developers:  

“… the graph would be showing me what a single  
minidump could not…” – Developer 1 



“Usually developers can guess 50-80% of crash causes by 
reading call traces. This graph can help developers see all 

traces together.” – Developer 2 
We plan to investigate further along this line to deploy 

crash graphs widely across Microsoft. In particular, we plan 
to ask many developers quantitative and qualitative questions 
if the crash graphs would be useful to fix these kinds of 
crashes, solicit suggestions for visualization, and perform an 
empirical user study on the efficacy of crash graphs. We also 
hope to help the developer community outside of Microsoft 
to adopt these crash analysis processes. 

VIII. ACKNOWLEDGEMENTS 
Our thanks to Windows 7 and Exchange 14 developers for 
their valuable feedback and comments on our study. We 
thank Brendan Murphy for his help with data collection and 
his discussions on this work. We also thank Ray Buse and 
Caitlin Sadowski for discussion on this work. 

IX. REFERENCES 
[1] E. Alpaydin, Introduction to Machine Learning: The MIT 

Press, 2004. 
[2] J. Anvik, L. Hiew, and G. C. Murphy, "Who should fix this 

bug?," in Proceedings of the 28th international conference on 
Software engineering. Shanghai, China: ACM, 2006, pp. 361-
370. 

[3] Apple, "Technical Note TN2123: CrashReporter," 2010. 
[4] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. 

Miller, and M. Schulz, "Stack Trace Analysis for Large Scale 
Debugging," in Parallel and Distributed Processing 
Symposium, 2007. IPDPS 2007, 2007. 

[5] K. Bartz, J. W. Stokes, J. C. Platt, R. Kivett, D. Grant, S. 
Calinoiu, and G. Loihle, "Finding similar failures using 
callstack similarity," in Proceedings of the Third conference 
on Tackling computer systems problems with machine 
learning techniques. San Diego, California: USENIX 
Association, 2008, pp. 1-1. 

[6] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, 
"Extracting structural information from bug reports," in 2008 
international working conference on Mining software 
repositories. Leipzig, Germany: ACM, 2008, pp. 27-30. 

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, 
Introduction to Algorithms, 2nd ed: The MIT Press, 2001. 

[8] A. Ganapathi, V. Ganapathi, and D. Patterson, "Windows XP 
kernel crash analysis," in Proceedings of the 20th conference 
on Large Installation System Administration. Washington, 
DC: USENIX Association, 2006, pp. 12-12. 

 [9] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. 
Orgovan, G. Nichols, D. Grant, G. Loihle, and G. Hunt, 
"Debugging in the (very) large: ten years of implementation 
and experience," in Proceedings of the ACM SIGOPS 22nd 

symposium on Operating systems principles. Big Sky, 
Montana, USA: ACM, 2009, pp. 103-116. 

[10] G. Jeong, S. Kim, and T. Zimmermann, "Improving bug 
triage with bug tossing graphs," in Proceedings of the the 7th 
joint meeting of the European software engineering 
conference and the ACM SIGSOFT symposium on The 
foundations of software engineering. Amsterdam, The 
Netherlands: ACM, 2009, pp. 111-120. 

[11] D. Kim, X. Wang, S. Kim, A. Zeller, S. C. Cheung, and S. 
Park., "Which Crashes Should I Fix First?: Predicting Top 
Crashes at an Early Stage to Prioritize Debugging Efforts," 
IEEE Trans. Softw. Eng., 2011. 

[12] H. Kwak, C. Lee, H. Park, and S. Moon, "What is Twitter, a 
social network or a news media?," in Proceedings of the 19th 
international conference on World wide web. Raleigh, North 
Carolina, USA: ACM, 2010, pp. 591-600. 

[13] Microsoft, "Windows Error Reporting: Getting Started," 
2010, 
http://www.microsoft.com/whdc/winlogo/maintain/StartWER
.mspx. 

[14] D. Molla, "Learning of graph-based question answering 
rules," in Proceedings of TextGraphs: the First Workshop on 
Graph Based Methods for Natural Language Processing on 
the First Workshop on Graph Based Methods for Natural 
Language Processing: Association for Computational 
Linguistics, 2006, pp. 37-44. 

[15] Mozilla, "Crash Stats," 2010, crash-stats.mozilla.com. 
[16] P. Runeson, M. Alexandersson, and O. Nyholm, "Detection of 

Duplicate Defect Reports Using Natural Language 
Processing," in Proceedings of the 29th international 
conference on Software Engineering: IEEE Computer 
Society, 2007, pp. 499-510. 

[17] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, "An 
approach to detecting duplicate bug reports using natural 
language and execution information," in Proceedings of the 
30th international conference on Software engineering. 
Leipzig, Germany: ACM, 2008, pp. 461-470. 

[18] D. B. West, Introduction to Graph Theory, 2nd ed: Prentice 
Hall, 2001. 

[19] L. Wiskott, J.-M. Fellous, N. Krüger, and C. v. d. Malsburg, 
"Face Recognition by Elastic Bunch Graph Matching," IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 775-779, 
1997. 

[20] I. H. Witten and E. Frank, Data Mining: Practical Machine 
Learning Tools and Techniques (Second Edition): Morgan 
Kaufmann, 2005. 

[21] T. Zimmermann and N. Nagappan, "Predicting defects using 
network analysis on dependency graphs," in Proceedings of 
the 30th international conference on Software engineering. 
Leipzig, Germany: ACM, 2008, pp. 531-540. 

 


