
Practical Extensions of a Randomized Testing Tool

Hojun Jaygarl, Carl K. Chang
Department of Computer Science

Iowa State University
Ames, USA

{jaygarl,chang}@cs.iastate.edu

Sunghun Kim
Department of Computer Science

The Hong Kong University of Science and Technology
Hong Kong, China
hunkim@cse.ust.hk

Abstract—Many efficient random testing algorithms for
object-oriented software have been proposed due to their sim-
plicity and reasonable code coverage; however, even the state-
of-the-art random test algorithms yield very low code coverage
(around 22%) on large-scale software. We propose four testing
techniques to improve test coverage. The proposed techniques
are pluggable to any existing random testing techniques for
object-oriented software. We incorporated our techniques to
a state-of-the-art random testing tool and tested large-scale
software, including Java Collections, Apache Ant, and ASM.
Our experimental study shows that the proposed techniques
increase at most 21% of branch coverage – a significant
improvement.

I. INTRODUCTION

Writing software tests is difficult and labor intensive work.
In particular, developers under release deadline pressure
often do not have enough resources to write and update test
cases. To make matters worse, writing tests for objected-
oriented (OO) code requires complex data inputs and valid
call sequences of each instance to properly test software.

Automated testing has the potential to address testing
problems, or at least to assist in addressing the problems.
Recently, many random testing algorithms for OO software
have been proposed and spotlighted due to their simplicity
and reasonable test coverage [1], [2], [3]; however, most
random testing algorithms are evaluated with small or toy
software. To be widely useful, testing algorithms should
scale and yield high test coverage for large-scale software.
We ran two state-of-the-art testing algorithms [1], [3] on
large-scale software including Java Collections, ASM and
Apache Ant. Unfortunately, the test coverage1of exiting
random testing algorithms is only 22.4%, which is too low
(see section 4).

Constructing unit tests for OO codes involves a number
of choices: what methods to call, what arguments to give,
or what order for invocations. The search space of possible
method sequences is very large, and different method/input

1“Test coverage” is defined as the percentage of test requirements in
this paper. If a test suite achieves 100% of coverage rate, it completes all
test requirements. Note that we use “branch-coverage” as test coverage in
this paper. Branch coverage measures which possible branches in selection
structures are followed.

selection strategies can have a big impact on the effective-
ness of test generation algorithms. Therefore, finding better
method/input selection strategy is desirable.

We propose and evaluate four techniques that together
can improve test coverage. Our four techniques use different
selection points in the construction of test inputs. Distance-
based selection collects the furthest input data from the used
values. Type-based selection gives equal chances between
different data types to be chosen. Open-access selection
allows the testing of all protected and private classes and
methods. Finally, the array generation technique generates
arrays by gathering values that have a requested element
type. These four techniques are pluggable in existing random
testing algorithms.

We implemented our techniques on top of the Random
Tester for OO Programs (RANDOOP) [3]. Then, we gener-
ated test cases and measured test coverage of them.

In this paper, we make the following contributions:

• We present three selection techniques, distance-
based, type-based, and open-access random testing ap-
proaches. Our techniques give a direction to select input
test data. These approaches show better test coverage
compared to the existing state-of-the-art approach.

• We provide one technique to generate array inputs and
array distance calculation.

• Our proposed four techniques together can greatly
improve the test coverage achieved by a test generator.

• To validate scalability, we evaluate our approach on
large-scale software including Java Collections, ASM,
and Apache Ant.

Our results show that the test coverage for these large-
scale software systems are increased from 43.2% to 64.2%,
22.4% to 35.7%, and 41.9% to 52.9% respectively. This
experiment shows that the proposed techniques significantly
increase the test coverage and make random testing tech-
niques more useful in practice.

The remainder of the paper is organized as follows:
Section 2 describes the background and related works of this
research. Section 3 proposes our method and input selection
techniques. Our empirical evaluation is presented in Section
4. We conclude in Section 5.

II. BACKGROUND AND RELATED WORK

A. Random Test Generation

In order to automatically generate test input data, random
testing (RT) has been proposed [4], which selects test
cases randomly from the input domain of a program. The
concept and implementation are relatively simple compared
to other existing techniques, and offers several benefits as
an effective black box testing technique, such as reliability.
Random testing has been widely used since it is simple to
be implemented and does not have human intervention.

Nevertheless, it has been argued that random testing lacks
a systematic approach to learn from previous executing
results. Adaptive random testing (ART) [5] offers an op-
portunity to choose evenly distributed inputs over the range
of possible input values. Thus, it became one of the most
effective approaches in the automatic test generation area.
One study shows ART to be at least 50% more efficient
than RT [5].

There are many ART approaches [6], [7], [5]. Among
them, the simplest adaptive random selection techniques
is Distance-based Adaptive Random Testing (D-ART), also
called Fixed-Sized-Candidate-Set ART (FSCS-ART) [5]. D-
ART projects input values into an input space and measure
distances between values in the input space. D-ART uses
two input data sets; a candidate set has several input data
and an executed set records used inputs. D-ART checks a
sum of distances from all elements of the executed set to
each candidate input in the candidate set, and then chooses
the furthest candidate as an input value.

Our approaches incorporate with feedback-directed ran-
dom test generation [3] and enhance adaptive random testing
for OO software [1]. We describe these two techniques in
the following sections.

B. Feedback-directed Random Test Generation

Feedback-directed Random Test generation technique (F-
RT) [8] incrementally generates method sequences by se-
lecting a method to apply and then selecting inputs to the
method of OO software. F-RT uses feedbacks from the
execution of the previously generated sequences as an input
for a currently selected method.

RANDOOP [9] is a tool that implements F-RT algorithm
by taking a set of classes to test and generates method call
sequences. RANDOOP creates JUnit [10] test cases based on
the sequences.

The experimental results show that F-RT outperforms
systematic and pure random test generation, according to
the criteria of test coverage and error detection [9], [3].
F-RT suggests an innovative idea; however, an adaptive
distribution of input selection (a directed random selection)
may be desirable for F-RT, since F-RT uses pure random (a
undirected random) selection strategy to select input data.

C. ARTOO

Ciupa et al. suggest adaptive random testing for OO
software (ARTOO) [1] that applies the D-ART approach to
choose input objects from a pool. Since D-ART for OO
programs needs to calculate the distance between objects,
they developed a new notion, object distance [11], and
applied it in OO software testing. ARTOO found the first
fault in a much smaller number of test cases, using only
20% of the number of test cases required by an undirected
random testing approach [1].

ARTOO characterizes objects by elementary distance
(the distance between the direct values of objects), type
distance (the distance between types of objects, completely
independent of the values of the object themselves), and
field distance (the distance between individual fields of the
objects). The object distance is calculated as summation of
these three components with weights and normalization2.

A major problem with D-ART and ARTOO is that a
dimension of input domain increases calculation time ex-
ponentially. For example, integer type values are easier
and faster for checking the distance; however, calculating
an object distance takes a much longer time. In Ciupa’s
paper [1], ARTOO took a much longer time (160% from
undirected RT) because of the calculation of object distance,
although ARTOO generates a smaller number of test cases.

III. EXTENSION OF METHOD AND INPUT SELECTION

We propose Practical Extensions of Random Testing (PE-
RT) that combines F-RT with our several random selection
techniques, such as distance, type, and open-access selection.

A. Distance-based input selection

ARTOO’s object distance calculation has high time com-
plexity. We suggest a simplified object distance that calcu-
lates object distance with lesser time complexity. We divided
input data types into three categories - primitive types (in-
cluding boxed types and a string type), array types and object
types. This separation removes unnecessary calculation of
the ARTOO’s object distance algorithm.

1) Primitive type distance: We determine a distance of
a primitive type as the following:

• Number type : |p− q|
• Character type: convert to a number type (e.g. based

on ASCII code table) and calculate as a number type
• Boolean type: 0 if identical, otherwise a positive con-

stance value which is greater than 0
• String type: the Levenshtein distance [12]

2We skip details of object distance algorithm in this paper. Please refer
Ciupa et al’s paper [11], [1].

2) Array type distance: For an array type distance, we
consider element type. If an array element type is a primitive,
distance is calculated as the following:

• identical: an array size is identical, a type of an element
is compatible3, and all the element values are the same.

• same size: an array size is identical, a type of an ele-
ment is compatible, but some of element values are not
identical. Calculate

∑
|a(i)− b(i)|, where 0 < i <=

the size of the array, and a(i) and b(i) are ith elements
of two arrays respectively.

• different size : only a type of element is compatible,
calculate

∑
|x− y|, where x and y are a size of each

array.
• different: they have different types of elements.
We normalize and give a weight for each category to

make the following equation:

identical > same size > different size > different = 0

3) Object type distance: We categorize an object dis-
tance between two objects into four levels:

• identical: identical types and identical field values
• similar: identical types, but different field values
• compatible: compatible types
• different: different types
The degree of distance is the following:

identical > similar > compatible > different = 0

We test the equality of two objects by the equal()
method and == operator to decide whether they are identical.
If their types are identical, our algorithm compares its
member variables to decide whether the distance of two
objects is identical or close. If they do not have identical
object types, our algorithm explores their common ancestors
to decide whether their distance is compatible or different.

B. Type-based input selection

There are two possible type-matching techniques to
choose input data for generating test cases: compatible type-
matching and identical type-matching. Literally, compatible
type-matching assumes compatible types as a matched type,
while identical type-matching defines only the same types as
a matched type. If objects have the common ancestor class or
interface, their types are compatible. For instance, consider
an interface I and two classes, C and D, that implement I .
In this instance, C and D are compatible types.

An input selection technique can be wrongly directed
if we use only one matching strategy among two type-
matching techniques. If we keep only an identical type-
matching technique, compatible type values never get a
chance to be selected. On the other hand, if we use the

3We define compatible types that share a common ancestor.

compatible type-matching technique, identical types have
lower probability to be selected than compatible types,
because the number of compatible type values is greater, in
general, than that of identical type values. Input data need
to be selected with the equal probability among compatible
and identical type values.

To solve this problem, we set the equal probability be-
tween two type-matching techniques instead of using only
one matching technique. In order words, input data are
selected with probability 0.5 for compatible type values and
0.5 for identical type values.

C. Open-access method selection

The open-access method selection technique can test non-
public methods. In Java, private and protected methods are
hard to be tested, since these non-public methods are not
accessible from the outside of classes or packages. We found
that 17% for Ant, 28% for Java containers and 34% for ASM
methods are non-public methods. The open-access method
selection increases test coverage by changing non-public
methods to public.

To include non-public methods for testing, we modified
method accessibility by using the ASM Bytecode Frame-
work [13]. The open-access method selection approach finds
all non-public methods and classes, and changes it to public
in a bytecode level.

D. Array input generation

Our array generation technique generates arrays as input
data from non-array feedbacks. Like an object type, array’s
high dimension of the input domain makes it difficult to
achieve high test coverage. Nevertheless, a simple array
generation technique increases code coverage in spite of the
complexity of array input.

Our array generation approach is as follows: if a method
under test takes an array input, the algorithm finds all
available values that match an array’s element type from the
previously generated inputs. When using a type-matching
strategy, we also use our type-based input selection ap-
proach. After listing all the available values, our algorithm
chooses a size of the input array by a randomly generated
number (the size is up to the number of possible values).
Based on the chosen size, the algorithm randomly selects
the values among the available values and assigns them to
a random position of the array.

IV. EVALUATION AND RESULTS

This section reports our empirical evaluation on the per-
formance and usefulness of the PE-RT approach, which
combines all our suggested approaches. The goal of this
experiment is to compare test coverage of a hybrid PE-RT
approach to the current state-of-the-art approach, F-RT, in
terms of time cost4 and the number of test cases. Also, we

Table I
SUBJECT OPEN SOURCE PROJECTS

Projects Name Testing Classes Methods KLOC Description
ISSTA Containers 5 71 2 Container classes presented by Visser et al. [14]

Java Collections 1.6 45 634 22 Java’s collection library
ASM 3.1 111 1353 40 A Java bytecode manipulation and analysis framework

Apache Ant 1.7.1 769 3001 209 A Java-based build tool

show the comparison results among all our individual ap-
proaches, such as distance/type-based input selection, open-
access method selection, and array generation approaches
including two different object distance calculation methods.

A. Experimental setup

The subjects are selected from well-known open source
projects, ISSTA Containers, Java Collections, Apache Ant,
and ASM. Table I presents information about the subjects.

ISSTA Containers has container classes (TreeMap,
BinTree, FibHeap, and BinomialHeap) used in Visser
et al’s paper [14]. The Java collection library is a well-
known JDK package (java.util) for Java developers.
It contains the collection framework, container classes, and
miscellaneous utility classes including list, set, and map
classes. We chose the remaining two projects - ASM and
Ant - among open source projects.

We evaluated each approach by measuring branch cover-
age criteria. We used a machine with Windows Vista, Intel
Pentium 2.2Ghz Dual Core, 3GB RAM. All test coverage
included in this section is branch coverage.

Table II
F-RT VS. PE-RT FOR COVERAGE

Projects F-RT PE-RT Improvement
ISSTA Containers 86.6% 91.6% 5.0%
Java Collections 43.2% 64.2% 21.0%

ASM 22.4% 35.7% 13.3%
Apache Ant 41.9% 52.9% 11.0%

B. Overall Observation

Table II shows test coverages of the original F-RT and
our PE-RT approaches. ISSTA containers is a relatively
small project that has only 71 methods, and state-of-the-arts
RANDOOP achieved over 86.6% of test coverage. Based on
their result, it is believed that the borderline of test coverage
that automatic tools can achieve has been nearly reached
[9]. Contrary to expectations, our PE-RT approach achieved
91.6% of test coverage, which is 5% more than F-RT. PE-
RT improves test coverage by 11-14% more test coverage
than F-RT for ASM and Ant.

The Java collections show the best result that is raised by
21.0% of test coverage by PE-RT compared to F-RT’s test
coverage, in spite of the large number of methods and code
size.

4In this paper, time cost means generation time of test cases.

Figure 1-4 shows test coverage for Java Containers and
ASM with respect to the number of test cases and time.
Most of our individual approaches increase test coverage in
terms of both the number of test cases and generation time.
Moreover, our combined approach, PE-RT, shows significant
improvement.

Table III represents the number of test cases and gener-
ation time between F-RT and PE-RT to reach certain test
coverage (goal coverage5). To achieve 42% of test coverage
for Java Containers, F-RT generated 10700 test cases in 485
seconds, meanwhile PE-RT generated 1170 test cases in 6
seconds. PE-RT achieves the goal coverage more quickly
with fewer test cases. Throughout all of the projects, almost
half of the test time and test case size are reduced to achieve
certain test coverage.

C. Distance-based input selection

The distance-based approach increases test coverage
through all projects with respect to the number of test cases;
however, it is very slow to generate test cases, as Ciupa et al.
mentioned in their paper [1]. In Figure 2, the distance-based
approach shows better test coverage at the beginning, but the
original F-RT surpasses it quickly. This is because ARTOO’s
distance based approach is too meticulous to select an input,
and object calculation is computationally expensive.

Table IV
SIMPLIFIED OBJECT DISTANCE

Projects Goal # Test Cases Time (Sec)
Coverage ARTOO:Simple ARTOO:Simple

ISSTA 82% 12865:9088 338:237
Java Util 42% 4340:3518 7997:1977

ASM 20% 13673:13802 4867:479

Our simplified distance-based input selection reduces the
computation time, and increases test coverage in terms of
both generation time and the number of test cases. Table IV
lists the result of direct comparison between Ciupa’s ap-
proach and ours. In Table IV, we measure the number of
test cases and time to reach certain test coverage by both
distance-based approaches. Our simplified distance based
approach shows consistent increments of approximately 2-
5% through all projects.

5The goal coverage has been decided by substrating 1-4% from the
highest coverage of F-RT for each project.

Table III
F-RT VS. PE-RT BASED ON CERTAIN COVERAGE

Projects Goal Coverage # Test Cases (F-RT:PE-RT) Ratio Time (Sec) (F-RT:PE-RT) Ratio
ISSTA Containers 82% 14209:8347 1.7:1 340:191 1.8:1
Java Collections 42% 10700:1170 9.1:1 485:6 80:1

ASM 20% 20469:2867 7.1:1 471:37 12.7:1
Apache Ant 40% 19466:8145 2.4:1 712:243 2.9:1

D. Type-based input selection

The type-based input selection constantly increases 2-
4% average test coverage for all of the projects. According
to Figures 1-4, our type-based input selection approach
is always better than F-RT. The result shows that there
are many redundant compatible type input data, and few
compatible type inputs are still necessary. By giving the
equal selection chance to both the identical and compatible
type inputs, we can get improvement of test coverage.

Figure 1. Java Containers for # Test Cases

E. Array Generation

Besides ISSTA Containers, the array generation approach
shows approximately 10% of test coverage increments for
Java Containers and 5-7% for ASM. Figures 1 and 2
illustrate that the array generation approach has the best
improvement except the combined approach. The result
shows that most of the projects need array inputs.

For ISSTA Containers, the array generation approach
shows 1-2% lower coverage than the original F-RT test
coverage because methods of five ISSTA containers do not
take an array input.

F. Open-access method selection

The open-access method selection gives 7-9% average
test coverage improvement, since it provides a way to test

Figure 2. Java Containers for Time

non-public methods without changing and analyzing source
codes. The open-access approach shows the best coverage
besides the all combined approach for ASM project with
respect to both time and test case size.

G. Limitation

Although our PE-RT approach shows better coverage, it
is still low for the ASM (36%) and Ant (53%) projects. We
found uncovered areas with the following obstacles.

• File I/O: For example, ASM needs a bytecode and Ant
requires a Build.xml file as an input of the project.
Moreover, XML file commonly has many keywords for
their properties, and some codes are triggered by only
those keywords.

• Concurrency: some codes are implemented as thread
and need communication with other threads.

• User Interface: some codes are for user interfaces and
need interaction.

• Environment: some codes are affected by environmen-
tal setting, such as OS, network connections, certain
devices, time and a certain situation, not only by inputs.
These codes might occur non-deterministic behaviors.

Figure 3. Coverage of ASM based on # Test Cases

Figure 4. Coverage ASM based on Generation Time

V. CONCLUSIONS

In this paper, we proposed four extended techniques:
distance-based, type-based input selection, open-access se-
lection and array generation. We have implemented them
on top of RANDOOP and tested with large-scale software
systems. Our experiments show that all four techniques
increase test coverage. Our approaches yield the best test
coverage when we combine all four approaches together;
they increase test coverage up to 21%.

Our proposed approaches are applicable for other existing
testing techniques. Anyone who wants to increase their

random testing coverage may benefit from integrating our
suggested techniques into their tools.

ACKNOWLEDGMENT

We thank Carlos Pacheco for providing RANDOOP’s
source code and test coverage checking code, and support-
ing.

REFERENCES

[1] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Artoo: adaptive
random testing for object-oriented software,” in ICSE, 2008,
pp. 71–80.

[2] N. Tillmann and J. de Halleux, “Pex–white box test
generation for .net,” in 2nd International Conference on
Tests and Proofs, April 2008, pp. 134–153. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-79124-9 10

[3] C. Pacheco, S. K. Lahiri, and T. Ball, “Finding errors in
.net with feedback-directed random testing,” in ISSTA 2008:
International Symposium on Software Testing and Analysis,
Seattle, Washington, July 20–24, 2008.

[4] R. Hamlet, “Random testing,” in Encyclopedia of Software
Engineering. Wiley, 1994, pp. 970–978.

[5] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive random
testing,” in ASIAN, 2004, pp. 320–329.

[6] K. P. Chan, T. Y. Chen, and D. Towey, “Restricted random
testing,” in ECSQ ’02: Proceedings of the 7th International
Conference on Software Quality. London, UK: Springer-
Verlag, 2002, pp. 321–330.

[7] T. Chen, F. Kuo, R. Merkel, and S. Ng, “Mirror adaptive
random testing,” Quality Software, 2003. Proceedings. Third
International Conference on, pp. 4–11, Nov. 2003.

[8] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in ICSE ’07: Proceedings of
the 29th International Conference on Software Engineering.
Minneapolis, MN, USA: IEEE Computer Society, 2007.

[9] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed
random testing for Java,” in OOPSLA 2007 Companion,
Montreal, Canada. ACM, Oct. 2007.

[10] “Junit,” http://junit.org.

[11] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Object
distance and its application to adaptive random testing of
object-oriented programs,” in RT ’06: Proceedings of the 1st
international workshop on Random testing. New York, NY,
USA: ACM, 2006, pp. 55–63.

[12] V. I. Levenshtein, “Binary codes capable of correcting dele-
tions, insertions, and reversals,” Tech. Rep. 8, 1966.

[13] “Asm: Java bytecode manipulation and analysis framework,”
http://asm.objectweb.org/.

[14] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek, “Test input
generation for java containers using state matching,” in ISSTA
’06: Proceedings of the 2006 international symposium on
Software testing and analysis. New York, NY, USA: ACM,
2006, pp. 37–48.

