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ABSTRACT 
The change history of a software project contains a rich collection 
of code changes that record previous development experience. 
Changes that fix bugs are especially interesting, since they record 
both the old buggy code and the new fixed code. This paper 
presents a bug finding algorithm using bug fix memories: a 
project-specific bug and fix knowledge base developed by 
analyzing the history of bug fixes. A bug finding tool, BugMem, 
implements the algorithm. The approach is different from bug 
finding tools based on theorem proving or static model checking 
such as Bandera, ESC/Java, FindBugs, JLint, and PMD. Since 
these tools use pre-defined common bug patterns to find bugs, 
they do not aim to identify project-specific bugs. Bug fix 
memories use a learning process, so the bug patterns are project-
specific, and project-specific bugs can be detected. The algorithm 
and tool are assessed by evaluating if real bugs and fixes in project 
histories can be found in the bug fix memories. Analysis of five 
open source projects shows that, for these projects, 19.3%-40.3% 
of bugs appear repeatedly in the memories, and 7.9%-15.5% of 
bug and fix pairs are found in memories. The results demonstrate 
that project-specific bug fix patterns occur frequently enough to be 
useful as a bug detection technique. Furthermore, for the bug and 
fix pairs, it is possible to both detect the bug and provide a strong 
suggestion for the fix. However, there is also a high false positive 
rate, with 20.8%-32.5% of non-bug containing changes also 
having patterns found in the memories. A comparison of BugMem 
with a bug finding tool, PMD, shows that the bug sets identified 
by both tools are mostly exclusive, indicating that BugMem 
complements other bug finding tools.  

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement – Restructuring, reverse engineering, and 
reengineering, D.2.8 [Software Engineering]: Metrics – Product 
metrics, K.6.3 [Management of Computing and Information 
Systems]: Software Management – Software maintenance 

General Terms 
Algorithms, Measurement, Experimentation 

Keywords 
Fault, Bug, Fix, Bug finding tool, Prediction, Patterns 

1. INTRODUCTION 
Bugs are prevalent in software. As a result, any technique that can 
automatically detect software bugs and suggest fixes will lead to 
fewer delivered bugs and improved software quality. Many 
automatic bug finding tools have been proposed, including 
Bandera [6], ESC/Java [11], FindBugs [14], JLint [1], and PMD 
[5]. They use a range of techniques to detect bugs and suggest 
fixes, including pre-defined bug patterns [1, 14], theorem proving 
[11], and model-checking [6]. These bug finding tools adopt a 
horizontal approach, using techniques that are applicable across all 
projects. To date, there are very few tools using the vertical 
approach of leveraging patterns in a specific project and 
performing project-specific bug finding. Recent work using this 
vertical approach includes [18], which focuses on detecting bugs 
in method usage pairs, and [28] which focuses on return value 
checking. In this paper, we present a vertical bug finding approach 
that extracts and memorizes a broad range of patterns in buggy 
code and uses the previous bug patterns of a specific project to 
find project-specific bugs in new changes or other parts of the 
source code. 

One of the common bugs detectable by horizontal bug finding 
tools is the null dereferencing bug, shown in Figure 1. The code 
tries to reference ‘bar’ when it is null. The correct behavior is to 
check whether ‘bar’ is null, printing the ‘foo’ field only if this is 
not the case.  
if (bar==null) { 
  System.out.println(bar.foo); 
} 

Figure 1. Example null dereferencing bug. 
The bug in Figure 1 is easily detected using horizontal bug finding 
techniques, and the null dereferencing bug is one of many kinds of 
bugs that exist across software projects. However, we believe that 
there are many project-specific bugs, since different projects have 
different requirements, business logic, and semantics. Consider 
two bug fix examples from the Eclipse JDT project, shown in 
Figure 2. Lines starting with “-” show buggy code, and lines 
starting with “+” show the corresponding bug fix.  

The example shows two separate instances in the history of two 
different files where an incorrect condition check, isOpen(), is 
removed and replaced with the correct condition check, 
hasJavaNature().This example is representative of a large class of 
bugs that are project-specific and involve the use of project-
specific abstractions and conventions. These bugs cannot be 
detected by existing horizontal bug finding tools [1, 5, 6, 11, 25], 
since these kinds of design or implementation details are usually 
not formally described, and change over time. The knowledge 
used to perform the bug fix shown in Figure 2 is common among 
the Eclipse core developers, part of their collective memory. It is 
not easy for new developers to learn such knowledge, and even 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGSOFT'06/FSE-14, November 5–11, 2006, Portland, Oregon, USA. 
Copyright 2006 ACM 1-59593-468-5/06/0011...$5.00. 



core developers sometimes forget, committing the same mistakes 
over again. 
JavaProject.java at transaction 2024 (Fix for bug 
28434) 

- if (requiredProjectRsc.exists() && 
-     requiredProjectRsc.isOpen()) {; 

+if(JavaProject.hasJavaNature(requiredProjectRsc)) 

DeltaProcessor.java at transaction 1945 (Fix for 
bug 27499) 

- boolean isOpened=proj.isOpen(); 
- if (isOpened && this.hasJavaNature(proj))     

+ if (JavaProject.hasJavaNature(proj)) 
Figure 2. Repeated bug fix examples in Eclipse. The ‘–’ and 
highlighting indicate buggy code and the ‘+ ’indicates a 
corresponding fix. The change log messages for each 
transaction indicate they are bug fixes.  
We can learn from previous mistakes to keep project-specific bugs 
from occurring again. A long-developed project usually has a 
software configuration management (SCM) repository that records 
a great number of bug fix changes. These bug fix changes record 
the location of bugs as well as their fixes, the solutions to the bugs. 
By extracting and saving the code patterns found in buggy code, it 
is possible to detect potential bugs in new changes. This paper 
presents an approach for building project-specific bug and fix 
memories from project change histories.  

The term “memories” is used to describe a database that stores bug 
and fix pattern instances extracted from bug fix changes in a 
project’s development history. An algorithm extracts pattern 
instances from bug fix changes by parsing, normalizing and 
filtering the code in the bug or fix area. The parsing step extracts 
syntax components from the code, the normalization process 
generalizes the syntax structure for matching similar code, and the 
filtering step eliminates noise in component matching. These 
extracted pattern instances are stored in the memories database for 
matching future bugs. A bug finding tool, BugMem, uses the 
memories for detecting project-specific bugs and suggesting fixes.  

After applying our approach on five open source projects, we find 
that 19.3%-40.3% of the bugs and 7.9%-15.5% of bug and fix 
pairs repeat in the history. The results demonstrate that project-
specific bug fix patterns occur frequently enough to be useful as a 
bug detection technique. Furthermore, for the bug and fix pairs, it 
is possible to both detect the bug and provide a strong suggestion 
for the fix.  

We compared BugMem with a bug finding tool based on a static 
syntax checker, PMD, and found that the identified bug sets by 
PMD and by BugMem are largely exclusive. This indicates that 
BugMem is not meant to replace conventional bug finding tools 
and can be used with other bug finding tool to maximize the bug 
detecting ability. 

The remainder of the paper begins by presenting algorithms to 
build bug fix memories from project change histories (Section 2) 
and then evaluates how well the memories match real bug fixes in 
a project’s change history (Section 3). We next describe the 
BugMem tool (Section 4). The paper ends with related work 
(Section 5) and conclusions (Section 6). 

2. BUILDING BUG FIX MEMORIES 
To build memories of bug fixes, we must identify those changes in 
a software project history where a bug was fixed. The first step is 
to extract source code, change logs, and source code changes 

(deltas) from a project’s SCM repository. Kenyon [3], a system 
that extracts source code change histories from CVS and 
Subversion, is used for this step. Kenyon automatically checks out 
the source code of each transaction—the set of file changes in one 
commit to the SCM system—and extracts change information 
such as the change log message, author, change date, source code, 
and change deltas.  

A file change contains a list of region pairs that show the 
differences between two file versions; each region is called a hunk 
(H), as shown in Figure 3. A hunk, H, consists of a set of source 
code lines. Within SCM systems, a file change that involves 
modification of a single line is recorded as the deletion of the old 
line, and addition of the new line. We capture this notion of 
changes recorded as deletions and additions with the concept of a 
hunk pair (HP). A hunk pair consists of a deleted hunk (DH) 
representing lines deleted from the prior version and the 
corresponding added hunk (AH) with lines added in the new 
version, i.e. HP = (DH, AH). We exclude hunks that include only 
import statements, comments, or code format changes, since most 
of these changes do not affect program behavior.  

Traditionally, bugs are identified in software by examining test 
executions for incorrect output, performing software inspections, 
or running static analysis tools. Our method for bug identification 
is somewhat different, in that we assume that developers have 
been using these traditional methods for bug identification 
throughout a project’s evolution, and have been fixing the buggy 
code. We use prior bug fix experience to identify future bugs.  

Bug fix changes are identified by mining SCM change log 
messages. Two approaches are used for this step: searching for 
keywords such as "Fixed" or "Bug" [20] and searching for 
references to bug reports stored in a bug tracking system, such as 
“#42233” [7, 10, 26]. This allows us to identify whether an entire 
transaction contains a bug fix.  

In bug fix changes, we start by assuming that deleted hunks (DH) 
are bug hunks (BH), and added hunks (AH) are fix hunks (FH), 
since by deleting the lines in DH a bug was removed, and by 
adding the lines in AH a bug was fixed. Formally, BH = DH and 
FH = AH if it is a bug fix change. 

 
Figure 3. The three types of hunk pairs in bug fix changes 
As is shown in Figure 3, there are three types of hunk pairs: 
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All addition types of hunk pairs are ignored since bugs are 
identified by examining the deleted hunk, which is empty in 
addition hunks (i.e., |DH|=0). 

The bug fix memories (M) are the union of the bug memories 
(BM) and fix memories (FM): M = BM ∪  FM. Bug memories 
(BM) and fix memories (FM) are the union of components 
extracted from the bug hunks or fix hunks in a project (a detailed 
description of the component extraction process is given in 
Section 2.1): 

BM = U )(BHextract , FM = )(U FHextract  

Put another way, the memories database for a specific project is 
built by iterating over each bug fix transaction and applying the 
component extraction algorithm. Extracted components are saved 
in the memories database. The overall process for building the bug 
fix memories database is sketched in Figure 4. 

M = null 
for (n = 1 to N) { 
   gather bug and fix hunks for transaction n 
   M = M ∪  extract(BH) ∪  extract(FH) for each bug and fix 
hunk pair in transaction n 
}  

Figure 4. The process for building bug fix memories. The total 
number of transactions is N. 
Once constructed, the bug fix memories can be used to detect 
potential bugs in new or existing source code and provide 
corresponding fix examples. The find function, which takes 
components and memories as inputs and returns a matched hunk 
pair set (MatchedHP), is defined as: 

! 

find(component,M)" MatchedHP

find(extract(BH),M)" MatchedHP

find(extract(FH),M)" MatchedHP

 

The next sections detail the process of building a project’s bug fix 
memories database.   

2.1 Extracting Components from Hunks 
The code in bug hunks represents the mistakes developers have 
made throughout a project’s history, while the code in fix hunks 
contains solutions to these mistakes. We want to learn from a 
project’s history so we can prevent mistakes similar to those 
already observed and provide useful suggestions for how to repair 
these errors. Intuitively, to achieve this goal we must record the 
code found in bug hunks as well as the corresponding fixes. But 
how? 

Naively, we can directly save all the code found in a bug hunk for 
use in future bug detection. Unfortunately, code in a new change 
typically does not have an exact match with the buggy code in the 
history. As a result, this approach would miss cases in which new 
code has a similar, but not equivalent, structure as the stored 
buggy code. In order to take a full advantage of the buggy code in 
the history, it is necessary to perform a series of steps that break 
the code down into its constituent parts, then abstract these parts 
into more general patterns. 
Central to our approach is an algorithm for extracting syntax 
patterns, called components, from hunks, which are saved to the 
memories database. The extraction process can be expressed as: 
extract (H)  {c | c is a component in H}. More specifically, 
extract (BH)  {c | c is a component in BH}, and extract (FH) 

{c | c is a component in FH} for bug and fix hunks. To extract 
components from hunks, the entire source code file is parsed to 
extract components. Then we collect only those components that 
fall into hunks. Currently, bug fix memories can only be 
constructed from programs written in Java, due to the ease of 
parsing this language.  
The rest of this section explains the component extraction 
algorithm, which is an implementation of the function, extract (H). 
The algorithm consists of four steps, raw component extraction, 
normalization, information filtering, and diff filtering.  

2.1.1 Raw Component Extraction 
In this step, the source code inside a hunk is parsed to burst out the 
individual syntactic elements found there. We begin by 
preprocessing the code to remove all whitespace and blank lines, 
so that formatting differences do not affect patterns. We 
differentiate between composite statements such as if, for, while, 
etc. and those that are simple such as method calls, assignment, etc. 
Code is further processed to concatenate all multi-line simple 
statements into a single line. Additional processing ensures that 
the conditional predicates of if, for, while, etc. all lie on a single 
line. This yields us basic syntax lines.  

 
Figure 5. Example code in a bug hunk (the type of the variable 
foo is Foo, the type of i is int, and the type of bar is unknown). 
Figure 5 shows an example of code in a bug hunk, used as a 
running example. Four basic syntax lines are extracted from this 
code: (1) if (foo.flag>=5 && foo.ready()); (2) i=1; (3) foo.create 
(“example”); and (4) initiate(5,bar). 
In the implementation of the component extractor, the Java parser 
only performs a single-pass scan of individual files, so types of 
some variables are unknown. This is the reason why the type of a 
variable or an expression is sometimes unknown, as with bar in 
Figure 5 above. 
Raw components are extracted based on the abstract syntax tree of 
a basic syntax line. More specifically, the set of non-leaf nodes in 
a syntax line’s abstract syntax tree are its raw components. For 
example, from the syntax line if (foo.flag>=5 && foo.ready()) in 
Figure 5, six raw components are extracted: (1) foo.flag, (2) 
foo.flag>=5, (3) ready(), (4) foo.ready(), (5) foo.flag>=5 && 
foo.ready(), and (6) if (foo.flag>=5 && foo.ready()). Note that 
foo.flag is the parent node of leaf nodes foo and flag, and string 
literals are treated as non-leaf nodes. 

A raw component can be one of the four high-level kinds: static 
Java call, Java call, user-defined call, or non-call. If a component 
does not represent a method call, it is of the non-call kind. If a 
component represents a method call, and the method call is an 
invocation of a Java core class or a static field of a Java core class, 
it is a static Java call. For example, the components 
System.out.println(“Hello”) and Integer. parseInt(“12”) are static 
Java calls. If a component represents a method call to a user-
defined object whose type is in the Java core classes, it is called a 
Java call. A method call to a user-defined method is a user-
defined call. This classification of components is used in setting 
component search options, described in Section 2.2.  

if (foo.flag>=5 && foo.ready()) { 
    i=1; 
    foo.create(“example”); 
    initiate(5,bar); 
} 



The data for a component consists of a component string and an 
actual parameter list. A non-call component has only component 
string data. For example, the component string for foo.flag is 
“foo.flag”. For a method call component, the method name and 
actual parameter list are represented separately. The component 
string for a method call component carries method name and 
parameter number information. For example, the component string 
for method calls initiate(), initiate(5), and initiate(5, 9) are 
initiate(), initiate(.), and initiate(,) respectively. The actual 
parameter list for initiate(5, 9) contains “5” and “9”. Method call 
components are represented in this way to support component 
matching, discussed further in Section 2.2. All the raw 
components extracted from the example code in Figure 5 are 
shown in the left part of Figure 6. Note that for each method call 
component there is an actual parameter list following the 
component string. 

foo.flag  
foo.flag>=5 
  
ready() 
foo.ready()  
foo.flag>=5 && foo.ready() 
 
if (foo.flag>=5 && foo.ready()) 
 
i=1 
 
“example” 
 
create(.)  “example” 
foo.create(.)    “example” 
initiate(,)        5, bar 

Foo.flag,  
Foo.flag>=5 
Foo.flag>=int  
ready() 
Foo.ready() 
Foo.flag>=5 && Foo.ready() 
Foo.flag>=int && Foo.ready() 
if (Foo.flag>=5 && Foo.ready()) 
if (Foo.flag>=int && Foo.ready()) 
int=1 
int=int 
“example” 
String 
create(.)  String 
Foo.create(.)    String 
initiate(,)        int, * 

Figure 6. Raw components (left) and components after 
normalization (right). 

2.1.2 Normalization 
The purpose of extracting components is to discover 
characteristics from the code in a bug or fix hunk so they can be 
used to match similar characteristics in new changes.  

To extend the possibility of matching similar code, a 
normalization step is performed on the extracted raw components. 
The normalization process follows the rules below. 

1. If the type of a variable in a raw component is known, the 
variable is normalized to its type in the resulting component. For 
example, given an object foo of type Foo, the raw component 
foo.flag will be normalized to Foo.flag. If the type is numeric (i.e. 
int, float, double, etc.), it is further normalized to int. Variables 
with unknown types are not normalized. 

2. For a raw component that contains a numeric, boolean, or char 
literal, two components are generated: one without normalization 
for the literal and one with the literal replaced by int, boolean, or 
char accordingly.  

3. For a raw component that contains a string literal, two 
components are generated: one without normalization that 
includes the original string literal and one with normalization 
where the string literal is replaced with String.  

4. For a method call, each actual parameter is normalized to the 
type of the parameter. If the type of a parameter value is unknown, 
a * indicates that this parameter can be any type. For example, the 
component string for component initiate(5,bar) is initiate(,) and 

the parameter list of this component is int and *, supposing the 
type of bar is unknown.  

A normalization level value is computed to indicate a component’s 
degree of normalization among its peers extracted from the same 
raw component. Due to the normalization of literals, several 
components may be generated for a raw component. For example, 
Foo.flag>=5 and Foo.flag>=int are two components generated by 
normalizing the component foo.flag>=5. Since Foo.flag>=5 has 
less normalization than Foo.flag>=int, a normalization level of 0 
is assigned to Foo.flag>=5, and a normalization level of 1 is 
assigned to Foo.flag>=int. The normalization level field is used in 
setting the component searching option.  

Figure 6 shows the resulting components after normalizing the raw 
component list in the left hand side of the figure. 

2.1.3 Information Filtering 
After normalization, the resulting components are candidate 
components for storage into the database. One problem that arises 
after the normalization step is that commonly occurring statement 
types are normalized to commonly occurring components. For 
example, integer assignment statements will generate int=int, 
which is very common. It is undesirable to add these common 
components to the database, since they will cause many false 
alarms. Therefore, a filtering step weeds out components such as 
these that carry little unique information. 
Table 1. The information value for detailed elements in 
components. 

Detailed 
Element 

Condition Infor-
mation 
Value 

Example 

if predicate Construct 1 if () 
do predicate Construct 1 while () 
while predicate Construct 1 while () 
for expression Construct 1 for () 
Conditional 
expression 

Construct 1 i>0? i: 1 

return statement Construct 1 return i 
case expression Construct 1 case 5: 
switch 
expression 

Construct  1 switch () 

synchronized 
expression 

Construct 1 synchronized () 

throw statement Construct 1 throw new Exception() 
string literal Length>8 2 “compiler.problem.Mess

ages” 
string literal Length between 

3 and 8  
1 “example” 

numeric literal  1 10 
method call  2 initiate() 
class name or 
variable type 

User-defined 
class 

1 Foo 

variable name or 
field name 

 1 flag 

Other Does not match 
any other 
category 

0 int=int 

A component’s information value indicates how much unique 
information it carries. The information value for a component is 
determined by summing the information values of its constituent 
elements. Table 1 lists the information value for different kinds of 
syntax constructs, identifiers and literals.  

Components possessing little unique information are filtered by 
defining an information value threshold, that is, we only keep 
components whose information value is greater than or equal to 2. 



Following this rule, four components are filtered from the 
resulting components listed in the right hand side of Figure 6, 
since their individual information values are less than 2.: int=1 
(information value of 1, from the numeric literal 1), int=int 
(information value 0, an “other”), “example” (information value 1, 
string literal), and String (information value 0, an “other”). 
2.1.4 Diff Filtering 
After the information filtering step, we obtain a list of components 
that pass our threshold for carrying sufficient unique information 
from the code in the bug hunk. A further filtering step is to 
determine the components that exist in the bug hunk but not in the 
fix hunk. That is, code characteristics that are common between 
the bug hunk and the fix hunk are not saved, since they are 
unchanged.  

 
Figure 7. Example code in a bug hunk and the corresponding 
code in the fix hunk. 

 
Figure 8. Components in the bug hunk but not in the fix funk 
for the example in Figure 7. 
Figure 7 shows example code in a bug hunk and its corresponding 
code in a fix hunk. Figure 8 shows the resulting components after 
diff filtering the components from the code in Figure 7. Several 
components have been filtered out in this step. One example is the 
component foo.ready(), which exists in both the bug hunk and the 
fix hunk. The components remaining at the end of this step are 
saved to the database. For the example in Figure 7, the 
components listed in Figure 8 will be saved to the memories 
database. 

2.2 Storing and Searching Memories 
Section 2.1 describes the algorithm for extracting components 
from the source code in hunks. This algorithm is applied to all of 

the bug and fix hunks in bug fix transactions, with the resulting 
components being saved to the memories database.  

Using a populated memories database, it is possible to perform 
bug detection and change suggestion. Bugs in new or existing 
code are found by searching for matching patterns in bug hunks, 
while change suggestions are made by returning the code in the 
corresponding fix hunk. For example, suppose the component if 
(Foo.flag>=5 && Foo.ready()) is found in a new change. The 
database is searched for records whose Component_string value is 
also if (Foo.flag>=5 && Foo.ready()) and whose In_bug_hunk 
value is true. If any matching records are found, it is possible to 
alert developers that their new change may contain a bug. We can 
additionally provide developers with suggestions on how to fix the 
bug by presenting the fix hunk code in the Fix_hunk field.  

Note that to match method call components, it is necessary to 
compare the parameter list as well as the component string. 
Special handling is also needed to match parameter types recorded 
as * in the parameter list, indicating that they match any parameter 
type. 
There are several options for component searching, which adjust 
the degree of exact/close matching and omission of very common 
components. The options are listed in Table 2. 

Table 2. Options for component searching.  

Option Description 
0 Only match components whose normalization_level is 0 

and exclude all static Java call or Java call component 
kinds.  

1 Only match components whose normalization_level is 0 
and exclude all static Java component kinds. 

2 Only match components whose normalization_level is 0. 
3 Match components with any normalization_level. 

Option 0 has the strictest matching rule for component searching. 
This option searches components that have the least normalization, 
and ignores all static Java call and Java call component kinds. 
The component System.out.println() is a commonly occurring 
example of a static Java call component. The component 
String.length(), normalized from str.length(),  is an example of a 
Java call kind, also a common pattern. Option 0 ignores 
components such as System.out.println() and String.length() to 
avoid the false positives they cause, since we believe developers 
typically do not make mistakes in these kinds of components. 
Option 1 is less strict than option 0, since it does not ignore Java 
call components, such as String.length(). Option 3 provides the 
most permissive component search, searching all components in 
the database. Option 3 yields the highest hit rates for component 
searching, but at the cost of more false positives. 

Table 3. Analyzed open source projects. The period shows the analyzed project timespan. The number of transactions indicates the 
number of transactions that contain at least one file change. The number of hunks indicates the total number of hunks. The number of bug 
fix hunks indicates the number of hunks in the bug fix changes. The number of components shows the component count after building 
memories. For the Eclipse project we use only the core.jdt module due to the large size of the entire project. 

Project Software 
type Period # of 

transactions 
# of 

hunks 
# of bug fix hunks 

(%) 
# of components 
in bug memories 

# of components 
in fix memories 

ArgoUML UML editor 01/1998 ~ 09/2005 4,685 56,476 9,682 (17.1%) 64,552 86,347 
Columba  Mail client 11/2002 ~ 12/2005 2,362 23,090 2,646 (11.5%) 10,919 17,177 
Eclipse IDE 06/2001 ~ 01/2006 6,394 72,215 23,223 (32.2%) 126,930 189,049 
jEdit Editor 09/2001 ~ 01/2006 1,190 18,966 5,060 (26.7%) 30,729 39,076 
Scarab Issue tracker 12/2000 ~ 02/2006 2,962 14,939 2,549 (17.1%) 13,632 19,859 

Bug Hunk Fix Hunk 

if (foo.flag>=5 && foo.ready()) { 
    i=1; 
    foo.create(“example”); 
    initiate(5,bar); 

if (foo.flag>=7  ||  foo.ready()) { 
    create(“example”); 
    initiate(5); 

Foo.flag>=5 
Foo.flag>=5 && Foo.ready() 
Foo.flag>=int && Foo.ready() 
if (Foo.flag>=5 && Foo.ready()) 
if (Foo.flag>=int && Foo.ready()) 
Foo.create(.)    String 
initiate(,)        int, * 
 



  

3. EVALUATION 
Before diving into the details of how we evaluate the effectiveness 
of bug fix memories, it is important to understand how they are 
intended to be used within a software project. A developer 
working on a project in their favorite development environment 
will receive feedback whenever the code they are developing 
matches one of the stored bug patterns. The tool that performs this 
matching is called BugMem, described in Section 4. The 
memories database developers are querying is always up to date. 
This is due to the inclusion, at checkin time, of new bug fix 
information. Since the component extraction process is 
computationally inexpensive, and requires no manual 
intervention, it is integrated into post-checkin processing for a 
project. As a result, the bug fix memories can be viewed as a kind 
of on-line learning algorithm. 

 
Figure 9. Evaluation of true positives and false positives 
Since the intended use of the memories is to find bugs and suggest 
changes in the current transaction by leveraging the information in 
all prior transactions, traditional approaches for evaluation are ill 
suited for this situation. In a project with n transactions, a typical 
approach would be to train on 90% of the transactions and then 
evaluate on the remaining 10%. It is also possible to pick different 
parts of the project to be the 90% by cycling the 10% evaluation 
set through different portions of the transaction history—k-fold 
cross-validation [22]. The drawback with these traditional 
evaluation approaches is they don’t reflect the actual use 
conditions of the memories database, since in normal use the 
transactions in the evaluation set would contribute to training the 
memories.  
Another common approach for evaluating bug finding techniques 
is to train a model on one project, then evaluate it on another. This 
is also ill-suited for evaluating the bug fix memories. Since a 
project’s memories are comprised of source code patterns, it is 
inherently specific to that project. In general, evaluation of 
vertical bug finding techniques involves training on one project 
and then assessing performance on that same project. 

The approach chosen for evaluating bug fix memories is sketched 
in Figure 9. We walk through the transaction history of a project, 
evaluating at each transaction how well the approach works when 
using only the information available as of that transaction. To 
evaluate the bug memories at transaction n, the memories are built 
using the bug fix hunks from transactions 1 to n-1. We then 
determine whether transaction n is a bug fix. If so, a check is 
performed to see if a component in the bug hunk at transaction n 
is found in the memories database. If found, it is called it a true 

positive hit, which means that the bug is found in the previous 
memories. If transaction n is a non-fix change, and a component 
in the non-bug hunk is found in the memories, it is called a false 
positive hit, since code that does not contain a bug matches the 
bug memories. Hit rates are used to evaluate the bug finding and 
suggestion generation capabilities of BugMem. 

The bug fix memories approach is also compared to a horizontal 
bug finding tool, PMD [5]. This permits an evaluation of how 
well BugMem and PMD perform at finding the actual bugs in the 
analyzed projects, and whether they find the same kinds of bugs. 
This is described in Section 3.3. 

3.1 Setup 
Project change histories from five open source projects, 
ArgoUML, Columba, Eclipse, jEdit, and Scarab, were extracted 
using the Kenyon infrastructure [3]. Subsequently, bug fix 
memories were built for each project using the approach described 
in Section 2. Table 3 summarizes the analyzed projects.  

3.2 Bug Fix Memory Hit Rates 
As described above, hit rates at a transaction n are computed by 
searching for matches in the memories built from transactions 1 to 
n-1. To precisely describe this process, notations are added to the 
bug memories, M, indicating which transactions have contributed 
information to the memories. A per-transaction memory, Mi, 
represents only those components extracted from transaction i. 
Per-transaction memories are used to define the memories as of a 
given transaction, n: 

  

! 

M
n

= M
i

i=1

n

U  

This permits a refinement of the find function to describe searches 
at a given transaction, n:  

! 

findn (extract(H),M
n"1
)# MatchedHP  

This states that the find function for transaction n only uses 
memories built using components from transactions 1 to n-1.  
All bug and fix hunks are extracted at transaction n, and checked 
to see if they match against 

! 

M
n"1. The process iterates from 

transaction 1 to the end transaction, N.  The overall process is 
sketched in Figure 10. 

For (n = 1 to N) { 
    If (transaction n is identified as a bug fix) { 
        Get bug or fix hunks in transaction n 
        Try )),(( 1!n

n MHextractfind  for each bug and fix hunk in 

transaction n 
   } 
}  

Figure 10. Process for evaluating hit rates. The total number 
of transactions is N. 
To determine half and full hit rates, we start by extracting 
matched hunk pairs (Half_hit_MatchedHP) using deleted hunks 
(DH) from the memories: 

! 

Half _ hit _MatchedHPn (HP) =   findn (extract(DH),M
n"1

) 

Build memories based 
on transaction 1 .. n-1 

…… 

False positive, 
if there is a hit. 

True positive,  
if there is a hit 

Transaction 1 .. n-1 

Memories 

 Non-fix change case 
at transaction n 

Fix change case 
at transaction n 



If a component in a bug hunk is found in the memories, it is 
defined as a half hit. A half hit indicates that the same kind of bug 
has been seen in previous transactions (memories): 

! 

Half _ hitn (HP)  iff   Half _ hit _MatchedHPn (HP) " #  

If a component in a fix hunk is also found in 
Half_hit_MatchedHP, it is a full hit. A full hit indicates that the 
exact bug and fix pair has been seen in previous transactions 
(memories). 

! 

Full_ hitn (HP) iff Half _ hitn (HP)"

( find(extract(AH),  Half _ hit _MatchedHPn (HP)) # $%

type(HP) = deletion)

 

More concisely, in order to have a full hit, a half hit must have 
occurred first. Additionally, the added (fix) hunk must be found in 
the bug and fix hunk pairs returned by the half hit database query 
(find(…)). In the case where there is no added hunk (code was 
deleted, but not added when fixing a bug), the hunk pair is of type 
deletion (type(HP)=deletion). Since it is not possible to find an 
empty added hunk in the half hit hunk pairs, a half hit is assumed 
to be a full hit in this case. 

 
Figure 11. Full and half hit rates, search option 3. 

Figure 11 shows the full and half hit rates of analyzed projects. 
Using different component search options yields different hit 
rates. Use of option 3 yields the results in Figure 11, which 
represent the highest possible hit rates. Full hits vary from 7.9% - 
15.5%, indicating that this many bug and fix pairs repeat over the 
project’s history. Half hit rates vary from 19.3%-40.3%, 
indicating that this many bug hunks are found in previous 
transactions (memories).  

From the developer’s perspective, the half hit rate indicates that in 
19.3%-40.3% of bug fix changes, the BugMem tool can find code 
in the change that matches an existing pattern. These matching 
lines can be highlighted for the developer as code that is likely to 
be buggy. Additionally, the full hit rates indicate that for 7.9%-
15.5% of the changes, it is possible for the BugMem tool to 
provide suggested changes, observed from the development 
history, to fix the identified bug. 

Table 4. True positive hit rates. 

        Option 
Projects 0 1 2 3  

Argouml 10.5% / 34.8% 10.8% / 35.3% 12.3% / 40.2% 12.4% / 40.3% 

Columba 5.9% / 15.1% 6.3% / 15.9% 7.9% / 19.2% 7.9% / 19.3% 

Eclipse 14.2% / 33.9% 14.6% / 34.6% 15.5% / 38.6% 15.5% / 38.7% 

jEdit 9.5% / 24.5% 10.1% / 26% 12.8% / 31.8% 12.8% / 31.9% 

Scarab 7.6% / 27% 8.3% / 28.8% 13.5% / 33.8% 13.5% / 33.8% 

To get a sense of the impact of different search options, hit rates 
were evaluated for all search options. Table 4 shows detailed full 
and half hit rates for search options 0-3. In general, there is little 
difference between options 2 and 3, but significant difference 
between options 0 and 3. 

To get a sense of the false positive rates of BugMem, the analysis 
shown in Figure 10 was repeated, this time using non bug fix 
hunks. If components in the non bug fix hunks are found in the 
memories, such components are false positives, since those hunks 
are not bug fixes, and hence not supposed to match any 
components in the memories. Figure 12 shows an overview of the 
hit rates. 

 
Figure 12. False positive hit rates, search option 3. 

Table 5 shows detailed false positive full and half hit rates for 
search options 0-3.  

Table 5. False positive hit rates. 

         Option 
Projects       0 1 2 3  

Argouml 7% / 26.5% 7.2% / 26.9% 9% / 32.4% 9.1% / 32.5% 

Columba 3.5% / 14.2% 3.8% / 15% 5.3% / 20.7% 5.3% / 20.8% 

Eclipse 5.9% / 18.8% 6% / 19.1% 6.5% / 21.9% 6.5% / 22.1% 

jEdit 5.8% / 16.7% 6.1% / 17.4% 7.7% / 21.5% 7.8% / 21.5% 

Scarab 7.8% / 21.6% 8.1% / 22.6% 10.4% / 29.9% 10.5% / 29.9% 

 

 
Figure 13. True positive (TP) and false positive (FP) full hit 
rates of analyzed projects. 
We compared the true positive (TP) full hit rates and false 
positive (FP) full hit rates, with results in Figure 13. Overall, the 
false positive full hit rates range from 7.8%-10.5%, which is 
2.6%-8.9% lower than the true positive hit rates. Even though the 
false positive hit rates are relatively high, BugMem is still useful, 
since it provides not only warning flags, but also bug fix examples 
(on average 1.7 fix examples per warning in jEdit). Developers 
can quickly decide if they want to accept or reject the warnings by 



examining the provided examples. Holmes et al. [13] and 
Mandelin et al. [19] show that providing code examples is 
beneficial for understanding software. BugMem always provides 
bug fix examples along with warnings.  

3.3 Comparison with PMD 
To compare a horizontal bug finding tool with the vertical 
approach used by BugMem, we identify bugs using a bug finding 
tool, PMD [5], comparing them with those identified by BugMem. 
PMD is chosen because it does not require annotation and only 
requires Java source code as its input. Other bug finding tools, 
such as FindBugs and JLint, take Java class files as their input, 
which would require source code compilation for every 
transaction. This is computationally very expensive. Since PMD 
performs syntactic checks on source code, it mostly catches 
stylistic bugs. Comparing BugMem with other bug finding tools 
such as FindBugs and JLint remains future work.  

PMD can identify potential bugs using pre-defined syntactic error 
patterns such as ‘empty if statement’, ‘misplaced null check’, or 
‘no null check in the equal method’ [5]. To compute its hit rate, 
potential bugs are located using PMD and then checked to see if 
the bugs are fixed in the project’s change histories.  

To compute full and half hit rates, PMD was run to obtain 
detected violations that fall into a hunk. The violation count of a 
hunk is defined as VC(H). For example, if a hunk includes 5 
violations, VC(H) is 5. All bug and fix hunks were extracted and 
violation counts were measured for each hunk, following the 
process sketched in Figure 14. 

For (r = 1 to N) { 
    Get bug fix hunks in transaction r 
    Compute VC(H) for each bug and fix hunk in transaction r 
}  

Figure 14. Process for evaluating PMD hit rates. The total 
number of transactions is N. 
A half hit occurs if the violation count of a bug hunk is greater 
than 0, since PMD correctly identifies some bugs in the bug 
hunks. To be a full hit, the violation number of a bug hunk must 
be reduced in the fix hunk. A full hit indicates that there are 
violations in the bug hunk, but the violations are removed in the 
fix hunk. If the hunk pair type is deletion and there is a hit on the 
bug hunk, it is assumed to be a full hit, since the violated code is 
removed. Formally, half and full hits are defined as: 

! 

Half _ hit(HP)  iff   VC(AH) > 0  

! 

Full_ hit(HP)  iff  Half _ hit(HP)"

                       (VC(DH) < VC(AH)# type(HP) = deletion)
 

 

Table 6. PMD hit rates of analyzed project. The first number 
indicates full hit rates, and the second means half hit rates. 

       Priority 
Projects 1 2 or less all 

Argouml 0.2% / 0.4%  1.9% / 6.4%  2% / 6.5% 
Columba  0.3% / 0.6%  2% / 6.2%  2% / 6.3% 
Eclipse 0.3% / 0.5%  1.4% / 6.5%  1.4% / 6.5% 
jEdit  0.1% / 0.4%  1.8% / 6.8%  1.8% / 6.8% 
Scarab 0.1% / 0.4%  2.7% / 7.2%  2.7% / 7.2% 

 

PMD assigns each violation a priority ranging from 1 to 3. A 
priority of 1 indicates a serious warning, while a priority of 3 
reflects less important warnings. We observe hit rate variances by 
using warnings at a specific priority level. Detailed full and half 
hit rates with priority combinations are shown in Table 6.  

Bug sets correctly identified by PMD and BugMem (half hits) 
were compared to see if the two sets are exclusive. Figure 15(a) 
shows the entire bug hunk space of ArgoUML, comprised of 
9,682 bug hunks. Among them, 3,900 (40.3%) of the bug hunks 
are correctly identified by BugMem (see Table 4, half hit at option 
3), and 625 (6.5%) are correctly identified by PMD (see Table 6, 
half hit at priority 3 or less). We then observed the intersection of 
the two correctly identified sets to see how these two tools can 
complement each other. Surprisingly, only 3% of the total 
identified hunks were common between PMD and BugMem. 

 
Figure 15. Identified bug hunk sets of two projects using PMD 
and BugMem. 
Figure 15(b) shows bug hunk sets identified by BugMem and 
PMD in Eclipse. Similar to ArgoUML, only 2.3% of the identified 
hunks were common in Eclipse. Intersections for other projects 
are shown in Table 7. The intersections of the identified bugs are 
about 1.1~3% of the total bug hunks. The results indicate that the 
hunk sets identified by PMD and BugMem are largely exclusive. 
We conclude that BugMem is not meant to replace prior bug 
finding tools. BugMem can find bugs that cannot be identified by 
PMD and vice-versa. There is considerable synergy in using a 
combination of vertical and horizontal bug finding tools together. 
Table 7. Identified bug hunks (half hit) by PMD, BugMem, 
and their intersection. 

Project BugMem hit (%) PMD hit (%) BugMem ∩  PMD (%) 
Argouml 3,900 (40.3%) 625 (6.5%) 286 (3%) 
Columba 510 (19.3%) 166 (6.3%) 30 (1.1%) 
Eclipse 8,982 (38.7%) 1,512 (6.5%) 536 (2.3%) 

jEdit 1,615 (31.9%) 342 (6.8%) 118 (2.3%) 
Scarab 862 (33.8%) 184 (7.2%) 55 (2.2%) 

3.4 Limitations of Memories  
3.4.1 Missing Memories. 
Since there are limitations inherent in line-based text diffs, our 
approach misses some kinds of bug fixes. For addition type hunk 
pairs (|DH| = 0), it is hard to find the buggy part of the source 
code. Suppose there is a bug fix change as shown in Figure 16. 
The if condition is added to check whether foo is null, so the fix 
hunk contains the if condition line and the bug hunk is empty. In 
fact, print(foo.a) at revision n-1 is buggy code, since there should 

BugMem 
half hit 
3,900 
(40.3%) 

PMD half hit 625 (6.5%) 

BugMem ∩ PMD  
286 out of 9,682 (3%) 

BugMem 
half hit 
8,982 
(38.7%) 

PMD half hit 1,512 (6.5%) 

BugMem ∩ PMD  
536 out of 23,223 (2.3%) 

(a) ArgoUML (b) Eclipse 



be an if condition before it to perform the null dereference check. 
Due to the empty bug hunk, this bug is missing in the memories. 
Similar cases include addition of try/catch statements, addition of 
an else branch, addition of a method call in a sequence of method 
calls, etc. In ongoing work, we are developing a set of these 
commonly occurring bug fix patterns.  

 
print(foo.a); 
 

if (foo!=null) { 
  print(foo.a); 
} 

Revision n-1 Revision n 
Figure 16. Addition hunk type example. 

3.4.2 Limitation in the initial stage of a project 
The bug fix memories approach is applicable only when a project 
has been under development for awhile, and hence some bug fixes 
have been collected in the memories. In contrast, horizontal bug 
finding tools can work immediately from transaction 1 of a newly 
started project. How many transactions must pass before BugMem 
achieves a reasonable hit rate? True positive half hit rates (option 
3) were observed over several thousand transactions, as shown 
Figure 17. Hit rates dramatically increase around transaction 200-
900 and then continue growing slowly as transactions accumulate. 
Waiting 200-900 transactions before using BugMem appears to be 
a reasonable rule-of-thumb.  

 
Figure 17. True positive half hit rates (option 3) over 
transactions.  

3.4.3 Only file-by-file basis 
Our approach is based on comparing a source code file of two 
versions, so the bugs captured and fixes suggested are only file-
by-file based. The cross-file relationships of bugs and fixes are 
not revealed. 

3.5 Threats to Validity 
There are four major threats to the validity of this work. 

Systems examined might not be representative. We examined 5 
systems, and it is still possible that we accidentally chose systems 
that have better (or worse) than average bug fix memories hit 
rates. Since we intentionally only chose systems that had some 
degree of linkage between change tracking systems and the text in 
the change log (so we could determine bug fix changes and 
hunks), we have a project selection bias. As our dataset increases 
the severity of this threat will diminish.  

Systems are all open source. The systems examined in this paper 
all use an open source development methodology, and hence 
might not be representative of all development contexts. It is 
possible that the stronger deadline pressure, different personnel 
turnover patterns, and different development processes used in 
commercial development could lead to different memories hit 
rates.  

All systems are written in Java. Extracting components from 
hunks and building memories requires a complete programming 
language parser. As a result, BugMem currently only supports the 
Java language. Other programming languages may have different 
bug patterns and memories hit rates. 

Bug fix data is incomplete. Even though we selected projects 
that have change logs with good quality, we still are only able to 
extract a subset of the total number of bugs (typically only 40%-
60% of those reported in the bug tracking system). The identified 
bug-fix data is not the oracle set. It may include false positives 
and false negatives. Incomplete bug fix data may increase (or 
decrease) false positive rates, and prevent the development of 
complete bug fix memories. 

4. USING BUG FIX MEMORIES  
Bug fix memories can be used to construct a bug finding tool and 
perform IDE integration. A project’s bug fix memories can also 
be used as a code example repository to provide awareness to 
developers. We describe each application in detail.  

4.1 Bug Finding Tool 
We implemented a bug finding tool, BugMem, using memories of 
bug fixes. Like other bug finding tools such as ESC/Java, 
FindBug, and PMD, the BugMem tool is provided source code 
and generates warning messages. Figure 18 shows example 
BugMem output which indicates that using setSelectText() might 
be a potential bug, and recommends changing it to insertTab() 
based on previous bug fix instances. BugMem provides real fix 
examples for identified bugs using fix data from the project’s bug 
fix memories.  
$ bugmem Test.java 

Warning in addText at Test.java  (line 10)   Found 4 memories 
Type: call "setSelectedText(.)" 
==================================================== 
org/gjt/sp/jedit/textarea/JEditTextArea.java at Rev: 114 in jedit 
==================================================== 
                     -  else setSelectedText("\t"); 
  +  else insertTab(); 
  …… 
Figure 18. Simple output of the BugMem command line tool. 

An IDE (Eclipse) integration of BugMem has also been 
implemented. During a source editing session using the IDE, 
BugMem can point out potentially buggy lines and provide real 
bug fix examples for those lines.  

4.2 Bug and Fix Understanding 
The memories of bug fixes are very useful for developers who are 
new to software projects. Core developers who know and 
remember all previous bugs and fixes may be able to avoid 
making the same mistakes again. For new developers, however, 
the memories of bug fixes are essential to guide their future 
development. When they does not know the right method or 



constant to use, automatically recovered memories of bug fixes 
can help correct mistakes and suggest correct examples. 

5. RELATED WORK 
In this section, we discuses related work on finding bugs, locating 
buggy areas, using project history to detect bugs, and using code 
examples to assist development. 

5.1 Bug Finding Tools 
Many bug finding tools such as Bandera, ESC/Java [11], PMD 
[5], JLint [1], and FindBugs [14] have been proposed and are in 
wide use [25]. Most of these tools use syntactic pattern matching, 
model checking, or theorem proving. They are similar to 
BugMem in that they perform static analysis, find bugs, and then 
suggest correct code. They are good at detecting commonly 
known bugs, such as null dereferencing errors. However, they do 
not detect high-level project-specific bugs. 

While prior bug finding tools use built-in and pre-defined bug 
patterns, BugMem learns project-specific bug patterns by 
analyzing an ongoing development history. Additionally, 
BugMem can suggest correct code to repair detected buggy code. 

5.2 Using Project History to Detect Bugs 
We used project histories to build memories to detect bugs and 
suggest fixes. Project histories are widely used to build project 
knowledge [7, 8], detect common bug patterns [18, 28], and find 
association rules among bugs [27]. 

Hipikat is a tool that recommends relevant software artifacts to 
developers based on project histories comprised of artifacts such 
as source code changes, mailing list messages, bug tracking 
entries, and written documentation [7, 8]. The Hipikat approach is 
similar to BugMem in that it builds up a repository of information 
from the project’s history. However, we explicitly identify bad 
(bug) and good (fix) memories to detect potential bugs and 
suggest fixes. Hipikat tries to provide related references to 
developers rather than identify good or bad memories. Hipikat 
uses lexical information (which is often automatically extracted) 
to search memories while BugMem analyzes source code and 
extracts components automatically. 

Williams and Hollingsworth use project histories to improve 
existing bug finding tools [28]. When a function returns a value, 
using the value without checking it may be a bug. The problem in 
this approach is that there are too many false positives, due to the 
generation of warnings about all source code that uses an 
unchecked return value. To remove these false positives, Williams 
and Hollingsworth use project histories to determine what kinds 
of function return values must be checked. For example, if the 
return value of the function ‘foo’ was always checked in the 
project history, but not checked in current source code, it is very 
suspicious.  

Livshits and Zimmermann combined software repository mining 
and dynamic analysis to discover common method usage patterns 
that are likely to encounter violations in Java applications [18]. 
Their approach employs dynamic analysis and is more specific in 
finding violation patterns on method usage pairs. For example, 
blockSignal() and unblockSingal() should always be paired in the 
source code.  
The approaches in [28] and [18] are vertical bug finding 
techniques similar to ours, since they both analyze project-specific 

patterns. However, they only focus on a small set of bug patterns, 
such as the return value checking in [28] and the method usage 
pairs in [18]. In contrast, BugMem uses all kinds of components 
to build memories and detect bugs, and the kinds of components 
keep growing along with the development process. 

Song et al. find association rules among six bug types from 
project histories [27]. Using these association rules, they can 
predict future bugs. For example, suppose bug types A and B are 
often found together in the history.  Then if we find only bug type 
A in the source code, we assume the code contains bug type B as 
well. BugMem uses components from bug hunks to detect bugs, 
and does not use any bug association rules. Using buggy 
component association rules may increase hit rates; testing this 
idea remains future work.  

Brun and Ernst extract properties from buggy code and feed it to 
machine learning algorithms to train a bug prediction model [4]. 
They use the Daikon invariant extractor [9] to extract invariant 
information. Their approach is similar in that they try to capture 
properties of buggy code and use it for future prediction. However, 
they use invariant information for their code properties, while we 
use syntactic information. 

5.3 Identifying Buggy Areas 
Identifying buggy code areas is quite useful for improving 
software quality, and many approaches have been proposed. Some 
approaches use software complexity metrics to identify buggy 
areas, assuming that complex software has more potential bugs 
[15, 23, 24]. Other approaches leverage a project’s bug history, 
change history, or code co-changes to identify buggy areas [2, 12, 
21].  Prediction accuracy for these approaches range from 60-
80%, but the areas predicted to be buggy are quite coarse, ranging 
from modules to binaries, files, or functions. Even though 
BugMem has lower accuracy (hit rate), it precisely locates bugs at 
the line level and provides suggestions for fixes. 

CP-Miner [17] is an approach that finds copy-paste code clone 
regions in source code and detects “forgot-to-change” bugs in 
them. In contrast, BugMem is able to identify bugs in any 
changed source code region. 

5.4 Using Code Examples to Assist 
Development 
Holmes and Murphy proposed an approach to extract structural 
components from example code and use them to assist coding 
when developers are working on similar code [13]. Mandelin et al. 
introduces a jungloid mining approach that automatically 
generates jungloid code fragments by mining library and example 
code to provide common API use examples [19]. The input to the 
jungloid mining is the input and output types of APIs. The output 
of jungloid mining is examples of method call sequences 
extracted from sample client programs or synthesized from API 
method signatures. The jungloid mining approach focuses solely 
on method calls. Source code search engines [16] are also widely 
used to find source code examples. BugMem is similar to source 
code example approaches, since we extract components from 
source code examples in the history (hunks). However, we 
identify both bad (from bug hunks) and good (from fix hunks) 
examples, using them to detect bugs. Prior code example 
approaches assume that all examples are good source code, but 
the existence of as-yet undiscovered bugs in all projects means 
that this is not true.  



6. CONCLUSIONS 
We presented BugMem, a project-specific bug finding tool using 
memories of bug fixes. BugMem detects potential bugs and 
suggests corresponding fixes. We evaluate BugMem by 
computing bug fix memories hit rates. We found that 19.3%-
40.3% of bugs (half hit) appear repeatedly, and 7.9%-15.5% of 
bug and fix pairs (full-hit) appear repeatedly in the history. We 
also compared identified bug sets by PMD and by BugMem, and 
found the two identified sets are mostly exclusive. We conclude 
that prior bug finding tools and BugMem should be used together 
to maximize bug detection capability.  
Source code repositories such as CVS and Subversion are 
typically used to store histories and make backups. In our view, a 
source core repository contains knowledge that can be used to 
discriminate between good and bad source code. So far, the 
knowledge available in source code repositories has not yet been 
fully leveraged. Our approach of computing memories of bug 
fixes provides a useful way to extract and deploy the knowledge 
latent in source code repositories. We harness this information to 
improve the quality of source code and provide detailed guidance 
to developers. 
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