
Memories of Bug Fixes
Sunghun Kim

Department of Computer Science
University of California, Santa Cruz

Santa Cruz, CA, USA
hunkim@cs.ucsc.edu

Kai Pan
Department of Computer Science

University of California, Santa Cruz
Santa Cruz, CA, USA

pankai@cs.ucsc.edu

E. James Whitehead, Jr.
Department of Computer Science

University of California, Santa Cruz
Santa Cruz, CA, USA
ejw@cs.ucsc.edu

ABSTRACT
The change history of a software project contains a rich collection
of code changes that record previous development experience.
Changes that fix bugs are especially interesting, since they record
both the old buggy code and the new fixed code. This paper
presents a bug finding algorithm using bug fix memories: a
project-specific bug and fix knowledge base developed by
analyzing the history of bug fixes. A bug finding tool, BugMem,
implements the algorithm. The approach is different from bug
finding tools based on theorem proving or static model checking
such as Bandera, ESC/Java, FindBugs, JLint, and PMD. Since
these tools use pre-defined common bug patterns to find bugs,
they do not aim to identify project-specific bugs. Bug fix
memories use a learning process, so the bug patterns are project-
specific, and project-specific bugs can be detected. The algorithm
and tool are assessed by evaluating if real bugs and fixes in project
histories can be found in the bug fix memories. Analysis of five
open source projects shows that, for these projects, 19.3%-40.3%
of bugs appear repeatedly in the memories, and 7.9%-15.5% of
bug and fix pairs are found in memories. The results demonstrate
that project-specific bug fix patterns occur frequently enough to be
useful as a bug detection technique. Furthermore, for the bug and
fix pairs, it is possible to both detect the bug and provide a strong
suggestion for the fix. However, there is also a high false positive
rate, with 20.8%-32.5% of non-bug containing changes also
having patterns found in the memories. A comparison of BugMem
with a bug finding tool, PMD, shows that the bug sets identified
by both tools are mostly exclusive, indicating that BugMem
complements other bug finding tools.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and
reengineering, D.2.8 [Software Engineering]: Metrics – Product
metrics, K.6.3 [Management of Computing and Information
Systems]: Software Management – Software maintenance

General Terms
Algorithms, Measurement, Experimentation

Keywords
Fault, Bug, Fix, Bug finding tool, Prediction, Patterns

1. INTRODUCTION
Bugs are prevalent in software. As a result, any technique that can
automatically detect software bugs and suggest fixes will lead to
fewer delivered bugs and improved software quality. Many
automatic bug finding tools have been proposed, including
Bandera [6], ESC/Java [11], FindBugs [14], JLint [1], and PMD
[5]. They use a range of techniques to detect bugs and suggest
fixes, including pre-defined bug patterns [1, 14], theorem proving
[11], and model-checking [6]. These bug finding tools adopt a
horizontal approach, using techniques that are applicable across all
projects. To date, there are very few tools using the vertical
approach of leveraging patterns in a specific project and
performing project-specific bug finding. Recent work using this
vertical approach includes [18], which focuses on detecting bugs
in method usage pairs, and [28] which focuses on return value
checking. In this paper, we present a vertical bug finding approach
that extracts and memorizes a broad range of patterns in buggy
code and uses the previous bug patterns of a specific project to
find project-specific bugs in new changes or other parts of the
source code.

One of the common bugs detectable by horizontal bug finding
tools is the null dereferencing bug, shown in Figure 1. The code
tries to reference ‘bar’ when it is null. The correct behavior is to
check whether ‘bar’ is null, printing the ‘foo’ field only if this is
not the case.
if (bar==null) {
 System.out.println(bar.foo);
}

Figure 1. Example null dereferencing bug.
The bug in Figure 1 is easily detected using horizontal bug finding
techniques, and the null dereferencing bug is one of many kinds of
bugs that exist across software projects. However, we believe that
there are many project-specific bugs, since different projects have
different requirements, business logic, and semantics. Consider
two bug fix examples from the Eclipse JDT project, shown in
Figure 2. Lines starting with “-” show buggy code, and lines
starting with “+” show the corresponding bug fix.

The example shows two separate instances in the history of two
different files where an incorrect condition check, isOpen(), is
removed and replaced with the correct condition check,
hasJavaNature().This example is representative of a large class of
bugs that are project-specific and involve the use of project-
specific abstractions and conventions. These bugs cannot be
detected by existing horizontal bug finding tools [1, 5, 6, 11, 25],
since these kinds of design or implementation details are usually
not formally described, and change over time. The knowledge
used to perform the bug fix shown in Figure 2 is common among
the Eclipse core developers, part of their collective memory. It is
not easy for new developers to learn such knowledge, and even

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGSOFT'06/FSE-14, November 5–11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011...$5.00.

core developers sometimes forget, committing the same mistakes
over again.
JavaProject.java at transaction 2024 (Fix for bug
28434)

- if (requiredProjectRsc.exists() &&
- requiredProjectRsc.isOpen()) {;

+if(JavaProject.hasJavaNature(requiredProjectRsc))

DeltaProcessor.java at transaction 1945 (Fix for
bug 27499)

- boolean isOpened=proj.isOpen();
- if (isOpened && this.hasJavaNature(proj))

+ if (JavaProject.hasJavaNature(proj))
Figure 2. Repeated bug fix examples in Eclipse. The ‘–’ and
highlighting indicate buggy code and the ‘+ ’indicates a
corresponding fix. The change log messages for each
transaction indicate they are bug fixes.
We can learn from previous mistakes to keep project-specific bugs
from occurring again. A long-developed project usually has a
software configuration management (SCM) repository that records
a great number of bug fix changes. These bug fix changes record
the location of bugs as well as their fixes, the solutions to the bugs.
By extracting and saving the code patterns found in buggy code, it
is possible to detect potential bugs in new changes. This paper
presents an approach for building project-specific bug and fix
memories from project change histories.

The term “memories” is used to describe a database that stores bug
and fix pattern instances extracted from bug fix changes in a
project’s development history. An algorithm extracts pattern
instances from bug fix changes by parsing, normalizing and
filtering the code in the bug or fix area. The parsing step extracts
syntax components from the code, the normalization process
generalizes the syntax structure for matching similar code, and the
filtering step eliminates noise in component matching. These
extracted pattern instances are stored in the memories database for
matching future bugs. A bug finding tool, BugMem, uses the
memories for detecting project-specific bugs and suggesting fixes.

After applying our approach on five open source projects, we find
that 19.3%-40.3% of the bugs and 7.9%-15.5% of bug and fix
pairs repeat in the history. The results demonstrate that project-
specific bug fix patterns occur frequently enough to be useful as a
bug detection technique. Furthermore, for the bug and fix pairs, it
is possible to both detect the bug and provide a strong suggestion
for the fix.

We compared BugMem with a bug finding tool based on a static
syntax checker, PMD, and found that the identified bug sets by
PMD and by BugMem are largely exclusive. This indicates that
BugMem is not meant to replace conventional bug finding tools
and can be used with other bug finding tool to maximize the bug
detecting ability.

The remainder of the paper begins by presenting algorithms to
build bug fix memories from project change histories (Section 2)
and then evaluates how well the memories match real bug fixes in
a project’s change history (Section 3). We next describe the
BugMem tool (Section 4). The paper ends with related work
(Section 5) and conclusions (Section 6).

2. BUILDING BUG FIX MEMORIES
To build memories of bug fixes, we must identify those changes in
a software project history where a bug was fixed. The first step is
to extract source code, change logs, and source code changes

(deltas) from a project’s SCM repository. Kenyon [3], a system
that extracts source code change histories from CVS and
Subversion, is used for this step. Kenyon automatically checks out
the source code of each transaction—the set of file changes in one
commit to the SCM system—and extracts change information
such as the change log message, author, change date, source code,
and change deltas.

A file change contains a list of region pairs that show the
differences between two file versions; each region is called a hunk
(H), as shown in Figure 3. A hunk, H, consists of a set of source
code lines. Within SCM systems, a file change that involves
modification of a single line is recorded as the deletion of the old
line, and addition of the new line. We capture this notion of
changes recorded as deletions and additions with the concept of a
hunk pair (HP). A hunk pair consists of a deleted hunk (DH)
representing lines deleted from the prior version and the
corresponding added hunk (AH) with lines added in the new
version, i.e. HP = (DH, AH). We exclude hunks that include only
import statements, comments, or code format changes, since most
of these changes do not affect program behavior.

Traditionally, bugs are identified in software by examining test
executions for incorrect output, performing software inspections,
or running static analysis tools. Our method for bug identification
is somewhat different, in that we assume that developers have
been using these traditional methods for bug identification
throughout a project’s evolution, and have been fixing the buggy
code. We use prior bug fix experience to identify future bugs.

Bug fix changes are identified by mining SCM change log
messages. Two approaches are used for this step: searching for
keywords such as "Fixed" or "Bug" [20] and searching for
references to bug reports stored in a bug tracking system, such as
“#42233” [7, 10, 26]. This allows us to identify whether an entire
transaction contains a bug fix.

In bug fix changes, we start by assuming that deleted hunks (DH)
are bug hunks (BH), and added hunks (AH) are fix hunks (FH),
since by deleting the lines in DH a bug was removed, and by
adding the lines in AH a bug was fixed. Formally, BH = DH and
FH = AH if it is a bug fix change.

Figure 3. The three types of hunk pairs in bug fix changes
As is shown in Figure 3, there are three types of hunk pairs:

!

type(HP) =

addition, if | DH | = 0

deletion, if | AH | = 0

modification, otherwise

"

$

%
$

&

'
$

(
$

Bug hunk

(a) Modification

DH
AH

Fix hunk Bug hunk

(b) Addition

AH

Fix hunk

DH Bug hunk
Fix hunk

(c) Deletion

All addition types of hunk pairs are ignored since bugs are
identified by examining the deleted hunk, which is empty in
addition hunks (i.e., |DH|=0).

The bug fix memories (M) are the union of the bug memories
(BM) and fix memories (FM): M = BM ∪ FM. Bug memories
(BM) and fix memories (FM) are the union of components
extracted from the bug hunks or fix hunks in a project (a detailed
description of the component extraction process is given in
Section 2.1):

BM = U)(BHextract , FM =)(U FHextract

Put another way, the memories database for a specific project is
built by iterating over each bug fix transaction and applying the
component extraction algorithm. Extracted components are saved
in the memories database. The overall process for building the bug
fix memories database is sketched in Figure 4.

M = null
for (n = 1 to N) {
 gather bug and fix hunks for transaction n
 M = M ∪ extract(BH) ∪ extract(FH) for each bug and fix
hunk pair in transaction n
}

Figure 4. The process for building bug fix memories. The total
number of transactions is N.
Once constructed, the bug fix memories can be used to detect
potential bugs in new or existing source code and provide
corresponding fix examples. The find function, which takes
components and memories as inputs and returns a matched hunk
pair set (MatchedHP), is defined as:

!

find(component,M)" MatchedHP

find(extract(BH),M)" MatchedHP

find(extract(FH),M)" MatchedHP

The next sections detail the process of building a project’s bug fix
memories database.

2.1 Extracting Components from Hunks
The code in bug hunks represents the mistakes developers have
made throughout a project’s history, while the code in fix hunks
contains solutions to these mistakes. We want to learn from a
project’s history so we can prevent mistakes similar to those
already observed and provide useful suggestions for how to repair
these errors. Intuitively, to achieve this goal we must record the
code found in bug hunks as well as the corresponding fixes. But
how?

Naively, we can directly save all the code found in a bug hunk for
use in future bug detection. Unfortunately, code in a new change
typically does not have an exact match with the buggy code in the
history. As a result, this approach would miss cases in which new
code has a similar, but not equivalent, structure as the stored
buggy code. In order to take a full advantage of the buggy code in
the history, it is necessary to perform a series of steps that break
the code down into its constituent parts, then abstract these parts
into more general patterns.
Central to our approach is an algorithm for extracting syntax
patterns, called components, from hunks, which are saved to the
memories database. The extraction process can be expressed as:
extract (H)  {c | c is a component in H}. More specifically,
extract (BH)  {c | c is a component in BH}, and extract (FH)

{c | c is a component in FH} for bug and fix hunks. To extract
components from hunks, the entire source code file is parsed to
extract components. Then we collect only those components that
fall into hunks. Currently, bug fix memories can only be
constructed from programs written in Java, due to the ease of
parsing this language.
The rest of this section explains the component extraction
algorithm, which is an implementation of the function, extract (H).
The algorithm consists of four steps, raw component extraction,
normalization, information filtering, and diff filtering.

2.1.1 Raw Component Extraction
In this step, the source code inside a hunk is parsed to burst out the
individual syntactic elements found there. We begin by
preprocessing the code to remove all whitespace and blank lines,
so that formatting differences do not affect patterns. We
differentiate between composite statements such as if, for, while,
etc. and those that are simple such as method calls, assignment, etc.
Code is further processed to concatenate all multi-line simple
statements into a single line. Additional processing ensures that
the conditional predicates of if, for, while, etc. all lie on a single
line. This yields us basic syntax lines.

Figure 5. Example code in a bug hunk (the type of the variable
foo is Foo, the type of i is int, and the type of bar is unknown).
Figure 5 shows an example of code in a bug hunk, used as a
running example. Four basic syntax lines are extracted from this
code: (1) if (foo.flag>=5 && foo.ready()); (2) i=1; (3) foo.create
(“example”); and (4) initiate(5,bar).
In the implementation of the component extractor, the Java parser
only performs a single-pass scan of individual files, so types of
some variables are unknown. This is the reason why the type of a
variable or an expression is sometimes unknown, as with bar in
Figure 5 above.
Raw components are extracted based on the abstract syntax tree of
a basic syntax line. More specifically, the set of non-leaf nodes in
a syntax line’s abstract syntax tree are its raw components. For
example, from the syntax line if (foo.flag>=5 && foo.ready()) in
Figure 5, six raw components are extracted: (1) foo.flag, (2)
foo.flag>=5, (3) ready(), (4) foo.ready(), (5) foo.flag>=5 &&
foo.ready(), and (6) if (foo.flag>=5 && foo.ready()). Note that
foo.flag is the parent node of leaf nodes foo and flag, and string
literals are treated as non-leaf nodes.

A raw component can be one of the four high-level kinds: static
Java call, Java call, user-defined call, or non-call. If a component
does not represent a method call, it is of the non-call kind. If a
component represents a method call, and the method call is an
invocation of a Java core class or a static field of a Java core class,
it is a static Java call. For example, the components
System.out.println(“Hello”) and Integer. parseInt(“12”) are static
Java calls. If a component represents a method call to a user-
defined object whose type is in the Java core classes, it is called a
Java call. A method call to a user-defined method is a user-
defined call. This classification of components is used in setting
component search options, described in Section 2.2.

if (foo.flag>=5 && foo.ready()) {
 i=1;
 foo.create(“example”);
 initiate(5,bar);
}

The data for a component consists of a component string and an
actual parameter list. A non-call component has only component
string data. For example, the component string for foo.flag is
“foo.flag”. For a method call component, the method name and
actual parameter list are represented separately. The component
string for a method call component carries method name and
parameter number information. For example, the component string
for method calls initiate(), initiate(5), and initiate(5, 9) are
initiate(), initiate(.), and initiate(,) respectively. The actual
parameter list for initiate(5, 9) contains “5” and “9”. Method call
components are represented in this way to support component
matching, discussed further in Section 2.2. All the raw
components extracted from the example code in Figure 5 are
shown in the left part of Figure 6. Note that for each method call
component there is an actual parameter list following the
component string.

foo.flag
foo.flag>=5

ready()
foo.ready()
foo.flag>=5 && foo.ready()

if (foo.flag>=5 && foo.ready())

i=1

“example”

create(.) “example”
foo.create(.) “example”
initiate(,) 5, bar

Foo.flag,
Foo.flag>=5
Foo.flag>=int
ready()
Foo.ready()
Foo.flag>=5 && Foo.ready()
Foo.flag>=int && Foo.ready()
if (Foo.flag>=5 && Foo.ready())
if (Foo.flag>=int && Foo.ready())
int=1
int=int
“example”
String
create(.) String
Foo.create(.) String
initiate(,) int, *

Figure 6. Raw components (left) and components after
normalization (right).

2.1.2 Normalization
The purpose of extracting components is to discover
characteristics from the code in a bug or fix hunk so they can be
used to match similar characteristics in new changes.

To extend the possibility of matching similar code, a
normalization step is performed on the extracted raw components.
The normalization process follows the rules below.

1. If the type of a variable in a raw component is known, the
variable is normalized to its type in the resulting component. For
example, given an object foo of type Foo, the raw component
foo.flag will be normalized to Foo.flag. If the type is numeric (i.e.
int, float, double, etc.), it is further normalized to int. Variables
with unknown types are not normalized.

2. For a raw component that contains a numeric, boolean, or char
literal, two components are generated: one without normalization
for the literal and one with the literal replaced by int, boolean, or
char accordingly.

3. For a raw component that contains a string literal, two
components are generated: one without normalization that
includes the original string literal and one with normalization
where the string literal is replaced with String.

4. For a method call, each actual parameter is normalized to the
type of the parameter. If the type of a parameter value is unknown,
a * indicates that this parameter can be any type. For example, the
component string for component initiate(5,bar) is initiate(,) and

the parameter list of this component is int and *, supposing the
type of bar is unknown.

A normalization level value is computed to indicate a component’s
degree of normalization among its peers extracted from the same
raw component. Due to the normalization of literals, several
components may be generated for a raw component. For example,
Foo.flag>=5 and Foo.flag>=int are two components generated by
normalizing the component foo.flag>=5. Since Foo.flag>=5 has
less normalization than Foo.flag>=int, a normalization level of 0
is assigned to Foo.flag>=5, and a normalization level of 1 is
assigned to Foo.flag>=int. The normalization level field is used in
setting the component searching option.

Figure 6 shows the resulting components after normalizing the raw
component list in the left hand side of the figure.

2.1.3 Information Filtering
After normalization, the resulting components are candidate
components for storage into the database. One problem that arises
after the normalization step is that commonly occurring statement
types are normalized to commonly occurring components. For
example, integer assignment statements will generate int=int,
which is very common. It is undesirable to add these common
components to the database, since they will cause many false
alarms. Therefore, a filtering step weeds out components such as
these that carry little unique information.
Table 1. The information value for detailed elements in
components.

Detailed
Element

Condition Infor-
mation
Value

Example

if predicate Construct 1 if ()
do predicate Construct 1 while ()
while predicate Construct 1 while ()
for expression Construct 1 for ()
Conditional
expression

Construct 1 i>0? i: 1

return statement Construct 1 return i
case expression Construct 1 case 5:
switch
expression

Construct 1 switch ()

synchronized
expression

Construct 1 synchronized ()

throw statement Construct 1 throw new Exception()
string literal Length>8 2 “compiler.problem.Mess

ages”
string literal Length between

3 and 8
1 “example”

numeric literal 1 10
method call 2 initiate()
class name or
variable type

User-defined
class

1 Foo

variable name or
field name

 1 flag

Other Does not match
any other
category

0 int=int

A component’s information value indicates how much unique
information it carries. The information value for a component is
determined by summing the information values of its constituent
elements. Table 1 lists the information value for different kinds of
syntax constructs, identifiers and literals.

Components possessing little unique information are filtered by
defining an information value threshold, that is, we only keep
components whose information value is greater than or equal to 2.

Following this rule, four components are filtered from the
resulting components listed in the right hand side of Figure 6,
since their individual information values are less than 2.: int=1
(information value of 1, from the numeric literal 1), int=int
(information value 0, an “other”), “example” (information value 1,
string literal), and String (information value 0, an “other”).
2.1.4 Diff Filtering
After the information filtering step, we obtain a list of components
that pass our threshold for carrying sufficient unique information
from the code in the bug hunk. A further filtering step is to
determine the components that exist in the bug hunk but not in the
fix hunk. That is, code characteristics that are common between
the bug hunk and the fix hunk are not saved, since they are
unchanged.

Figure 7. Example code in a bug hunk and the corresponding
code in the fix hunk.

Figure 8. Components in the bug hunk but not in the fix funk
for the example in Figure 7.
Figure 7 shows example code in a bug hunk and its corresponding
code in a fix hunk. Figure 8 shows the resulting components after
diff filtering the components from the code in Figure 7. Several
components have been filtered out in this step. One example is the
component foo.ready(), which exists in both the bug hunk and the
fix hunk. The components remaining at the end of this step are
saved to the database. For the example in Figure 7, the
components listed in Figure 8 will be saved to the memories
database.

2.2 Storing and Searching Memories
Section 2.1 describes the algorithm for extracting components
from the source code in hunks. This algorithm is applied to all of

the bug and fix hunks in bug fix transactions, with the resulting
components being saved to the memories database.

Using a populated memories database, it is possible to perform
bug detection and change suggestion. Bugs in new or existing
code are found by searching for matching patterns in bug hunks,
while change suggestions are made by returning the code in the
corresponding fix hunk. For example, suppose the component if
(Foo.flag>=5 && Foo.ready()) is found in a new change. The
database is searched for records whose Component_string value is
also if (Foo.flag>=5 && Foo.ready()) and whose In_bug_hunk
value is true. If any matching records are found, it is possible to
alert developers that their new change may contain a bug. We can
additionally provide developers with suggestions on how to fix the
bug by presenting the fix hunk code in the Fix_hunk field.

Note that to match method call components, it is necessary to
compare the parameter list as well as the component string.
Special handling is also needed to match parameter types recorded
as * in the parameter list, indicating that they match any parameter
type.
There are several options for component searching, which adjust
the degree of exact/close matching and omission of very common
components. The options are listed in Table 2.

Table 2. Options for component searching.

Option Description
0 Only match components whose normalization_level is 0

and exclude all static Java call or Java call component
kinds.

1 Only match components whose normalization_level is 0
and exclude all static Java component kinds.

2 Only match components whose normalization_level is 0.
3 Match components with any normalization_level.

Option 0 has the strictest matching rule for component searching.
This option searches components that have the least normalization,
and ignores all static Java call and Java call component kinds.
The component System.out.println() is a commonly occurring
example of a static Java call component. The component
String.length(), normalized from str.length(), is an example of a
Java call kind, also a common pattern. Option 0 ignores
components such as System.out.println() and String.length() to
avoid the false positives they cause, since we believe developers
typically do not make mistakes in these kinds of components.
Option 1 is less strict than option 0, since it does not ignore Java
call components, such as String.length(). Option 3 provides the
most permissive component search, searching all components in
the database. Option 3 yields the highest hit rates for component
searching, but at the cost of more false positives.

Table 3. Analyzed open source projects. The period shows the analyzed project timespan. The number of transactions indicates the
number of transactions that contain at least one file change. The number of hunks indicates the total number of hunks. The number of bug
fix hunks indicates the number of hunks in the bug fix changes. The number of components shows the component count after building
memories. For the Eclipse project we use only the core.jdt module due to the large size of the entire project.

Project Software
type Period # of

transactions
of

hunks
of bug fix hunks

(%)
of components
in bug memories

of components
in fix memories

ArgoUML UML editor 01/1998 ~ 09/2005 4,685 56,476 9,682 (17.1%) 64,552 86,347
Columba Mail client 11/2002 ~ 12/2005 2,362 23,090 2,646 (11.5%) 10,919 17,177
Eclipse IDE 06/2001 ~ 01/2006 6,394 72,215 23,223 (32.2%) 126,930 189,049
jEdit Editor 09/2001 ~ 01/2006 1,190 18,966 5,060 (26.7%) 30,729 39,076
Scarab Issue tracker 12/2000 ~ 02/2006 2,962 14,939 2,549 (17.1%) 13,632 19,859

Bug Hunk Fix Hunk

if (foo.flag>=5 && foo.ready()) {
 i=1;
 foo.create(“example”);
 initiate(5,bar);

if (foo.flag>=7 || foo.ready()) {
 create(“example”);
 initiate(5);

Foo.flag>=5
Foo.flag>=5 && Foo.ready()
Foo.flag>=int && Foo.ready()
if (Foo.flag>=5 && Foo.ready())
if (Foo.flag>=int && Foo.ready())
Foo.create(.) String
initiate(,) int, *

3. EVALUATION
Before diving into the details of how we evaluate the effectiveness
of bug fix memories, it is important to understand how they are
intended to be used within a software project. A developer
working on a project in their favorite development environment
will receive feedback whenever the code they are developing
matches one of the stored bug patterns. The tool that performs this
matching is called BugMem, described in Section 4. The
memories database developers are querying is always up to date.
This is due to the inclusion, at checkin time, of new bug fix
information. Since the component extraction process is
computationally inexpensive, and requires no manual
intervention, it is integrated into post-checkin processing for a
project. As a result, the bug fix memories can be viewed as a kind
of on-line learning algorithm.

Figure 9. Evaluation of true positives and false positives
Since the intended use of the memories is to find bugs and suggest
changes in the current transaction by leveraging the information in
all prior transactions, traditional approaches for evaluation are ill
suited for this situation. In a project with n transactions, a typical
approach would be to train on 90% of the transactions and then
evaluate on the remaining 10%. It is also possible to pick different
parts of the project to be the 90% by cycling the 10% evaluation
set through different portions of the transaction history—k-fold
cross-validation [22]. The drawback with these traditional
evaluation approaches is they don’t reflect the actual use
conditions of the memories database, since in normal use the
transactions in the evaluation set would contribute to training the
memories.
Another common approach for evaluating bug finding techniques
is to train a model on one project, then evaluate it on another. This
is also ill-suited for evaluating the bug fix memories. Since a
project’s memories are comprised of source code patterns, it is
inherently specific to that project. In general, evaluation of
vertical bug finding techniques involves training on one project
and then assessing performance on that same project.

The approach chosen for evaluating bug fix memories is sketched
in Figure 9. We walk through the transaction history of a project,
evaluating at each transaction how well the approach works when
using only the information available as of that transaction. To
evaluate the bug memories at transaction n, the memories are built
using the bug fix hunks from transactions 1 to n-1. We then
determine whether transaction n is a bug fix. If so, a check is
performed to see if a component in the bug hunk at transaction n
is found in the memories database. If found, it is called it a true

positive hit, which means that the bug is found in the previous
memories. If transaction n is a non-fix change, and a component
in the non-bug hunk is found in the memories, it is called a false
positive hit, since code that does not contain a bug matches the
bug memories. Hit rates are used to evaluate the bug finding and
suggestion generation capabilities of BugMem.

The bug fix memories approach is also compared to a horizontal
bug finding tool, PMD [5]. This permits an evaluation of how
well BugMem and PMD perform at finding the actual bugs in the
analyzed projects, and whether they find the same kinds of bugs.
This is described in Section 3.3.

3.1 Setup
Project change histories from five open source projects,
ArgoUML, Columba, Eclipse, jEdit, and Scarab, were extracted
using the Kenyon infrastructure [3]. Subsequently, bug fix
memories were built for each project using the approach described
in Section 2. Table 3 summarizes the analyzed projects.

3.2 Bug Fix Memory Hit Rates
As described above, hit rates at a transaction n are computed by
searching for matches in the memories built from transactions 1 to
n-1. To precisely describe this process, notations are added to the
bug memories, M, indicating which transactions have contributed
information to the memories. A per-transaction memory, Mi,
represents only those components extracted from transaction i.
Per-transaction memories are used to define the memories as of a
given transaction, n:

!

M
n

= M
i

i=1

n

U

This permits a refinement of the find function to describe searches
at a given transaction, n:

!

findn (extract(H),M
n"1
)# MatchedHP

This states that the find function for transaction n only uses
memories built using components from transactions 1 to n-1.
All bug and fix hunks are extracted at transaction n, and checked
to see if they match against

!

M
n"1. The process iterates from

transaction 1 to the end transaction, N. The overall process is
sketched in Figure 10.

For (n = 1 to N) {
 If (transaction n is identified as a bug fix) {
 Get bug or fix hunks in transaction n
 Try)),((1!n

n MHextractfind for each bug and fix hunk in

transaction n
 }
}

Figure 10. Process for evaluating hit rates. The total number
of transactions is N.
To determine half and full hit rates, we start by extracting
matched hunk pairs (Half_hit_MatchedHP) using deleted hunks
(DH) from the memories:

!

Half _ hit _MatchedHPn (HP) = findn (extract(DH),M
n"1

)

Build memories based
on transaction 1 .. n-1

……

False positive,
if there is a hit.

True positive,
if there is a hit

Transaction 1 .. n-1

Memories

 Non-fix change case
at transaction n

Fix change case
at transaction n

If a component in a bug hunk is found in the memories, it is
defined as a half hit. A half hit indicates that the same kind of bug
has been seen in previous transactions (memories):

!

Half _ hitn (HP) iff Half _ hit _MatchedHPn (HP) " #

If a component in a fix hunk is also found in
Half_hit_MatchedHP, it is a full hit. A full hit indicates that the
exact bug and fix pair has been seen in previous transactions
(memories).

!

Full_ hitn (HP) iff Half _ hitn (HP)"

(find(extract(AH), Half _ hit _MatchedHPn (HP)) # $%

type(HP) = deletion)

More concisely, in order to have a full hit, a half hit must have
occurred first. Additionally, the added (fix) hunk must be found in
the bug and fix hunk pairs returned by the half hit database query
(find(…)). In the case where there is no added hunk (code was
deleted, but not added when fixing a bug), the hunk pair is of type
deletion (type(HP)=deletion). Since it is not possible to find an
empty added hunk in the half hit hunk pairs, a half hit is assumed
to be a full hit in this case.

Figure 11. Full and half hit rates, search option 3.

Figure 11 shows the full and half hit rates of analyzed projects.
Using different component search options yields different hit
rates. Use of option 3 yields the results in Figure 11, which
represent the highest possible hit rates. Full hits vary from 7.9% -
15.5%, indicating that this many bug and fix pairs repeat over the
project’s history. Half hit rates vary from 19.3%-40.3%,
indicating that this many bug hunks are found in previous
transactions (memories).

From the developer’s perspective, the half hit rate indicates that in
19.3%-40.3% of bug fix changes, the BugMem tool can find code
in the change that matches an existing pattern. These matching
lines can be highlighted for the developer as code that is likely to
be buggy. Additionally, the full hit rates indicate that for 7.9%-
15.5% of the changes, it is possible for the BugMem tool to
provide suggested changes, observed from the development
history, to fix the identified bug.

Table 4. True positive hit rates.

 Option
Projects 0 1 2 3

Argouml 10.5% / 34.8% 10.8% / 35.3% 12.3% / 40.2% 12.4% / 40.3%

Columba 5.9% / 15.1% 6.3% / 15.9% 7.9% / 19.2% 7.9% / 19.3%

Eclipse 14.2% / 33.9% 14.6% / 34.6% 15.5% / 38.6% 15.5% / 38.7%

jEdit 9.5% / 24.5% 10.1% / 26% 12.8% / 31.8% 12.8% / 31.9%

Scarab 7.6% / 27% 8.3% / 28.8% 13.5% / 33.8% 13.5% / 33.8%

To get a sense of the impact of different search options, hit rates
were evaluated for all search options. Table 4 shows detailed full
and half hit rates for search options 0-3. In general, there is little
difference between options 2 and 3, but significant difference
between options 0 and 3.

To get a sense of the false positive rates of BugMem, the analysis
shown in Figure 10 was repeated, this time using non bug fix
hunks. If components in the non bug fix hunks are found in the
memories, such components are false positives, since those hunks
are not bug fixes, and hence not supposed to match any
components in the memories. Figure 12 shows an overview of the
hit rates.

Figure 12. False positive hit rates, search option 3.

Table 5 shows detailed false positive full and half hit rates for
search options 0-3.

Table 5. False positive hit rates.

 Option
Projects 0 1 2 3

Argouml 7% / 26.5% 7.2% / 26.9% 9% / 32.4% 9.1% / 32.5%

Columba 3.5% / 14.2% 3.8% / 15% 5.3% / 20.7% 5.3% / 20.8%

Eclipse 5.9% / 18.8% 6% / 19.1% 6.5% / 21.9% 6.5% / 22.1%

jEdit 5.8% / 16.7% 6.1% / 17.4% 7.7% / 21.5% 7.8% / 21.5%

Scarab 7.8% / 21.6% 8.1% / 22.6% 10.4% / 29.9% 10.5% / 29.9%

Figure 13. True positive (TP) and false positive (FP) full hit
rates of analyzed projects.
We compared the true positive (TP) full hit rates and false
positive (FP) full hit rates, with results in Figure 13. Overall, the
false positive full hit rates range from 7.8%-10.5%, which is
2.6%-8.9% lower than the true positive hit rates. Even though the
false positive hit rates are relatively high, BugMem is still useful,
since it provides not only warning flags, but also bug fix examples
(on average 1.7 fix examples per warning in jEdit). Developers
can quickly decide if they want to accept or reject the warnings by

examining the provided examples. Holmes et al. [13] and
Mandelin et al. [19] show that providing code examples is
beneficial for understanding software. BugMem always provides
bug fix examples along with warnings.

3.3 Comparison with PMD
To compare a horizontal bug finding tool with the vertical
approach used by BugMem, we identify bugs using a bug finding
tool, PMD [5], comparing them with those identified by BugMem.
PMD is chosen because it does not require annotation and only
requires Java source code as its input. Other bug finding tools,
such as FindBugs and JLint, take Java class files as their input,
which would require source code compilation for every
transaction. This is computationally very expensive. Since PMD
performs syntactic checks on source code, it mostly catches
stylistic bugs. Comparing BugMem with other bug finding tools
such as FindBugs and JLint remains future work.

PMD can identify potential bugs using pre-defined syntactic error
patterns such as ‘empty if statement’, ‘misplaced null check’, or
‘no null check in the equal method’ [5]. To compute its hit rate,
potential bugs are located using PMD and then checked to see if
the bugs are fixed in the project’s change histories.

To compute full and half hit rates, PMD was run to obtain
detected violations that fall into a hunk. The violation count of a
hunk is defined as VC(H). For example, if a hunk includes 5
violations, VC(H) is 5. All bug and fix hunks were extracted and
violation counts were measured for each hunk, following the
process sketched in Figure 14.

For (r = 1 to N) {
 Get bug fix hunks in transaction r
 Compute VC(H) for each bug and fix hunk in transaction r
}

Figure 14. Process for evaluating PMD hit rates. The total
number of transactions is N.
A half hit occurs if the violation count of a bug hunk is greater
than 0, since PMD correctly identifies some bugs in the bug
hunks. To be a full hit, the violation number of a bug hunk must
be reduced in the fix hunk. A full hit indicates that there are
violations in the bug hunk, but the violations are removed in the
fix hunk. If the hunk pair type is deletion and there is a hit on the
bug hunk, it is assumed to be a full hit, since the violated code is
removed. Formally, half and full hits are defined as:

!

Half _ hit(HP) iff VC(AH) > 0

!

Full_ hit(HP) iff Half _ hit(HP)"

 (VC(DH) < VC(AH)# type(HP) = deletion)

Table 6. PMD hit rates of analyzed project. The first number
indicates full hit rates, and the second means half hit rates.

 Priority
Projects 1 2 or less all

Argouml 0.2% / 0.4% 1.9% / 6.4% 2% / 6.5%
Columba 0.3% / 0.6% 2% / 6.2% 2% / 6.3%
Eclipse 0.3% / 0.5% 1.4% / 6.5% 1.4% / 6.5%
jEdit 0.1% / 0.4% 1.8% / 6.8% 1.8% / 6.8%
Scarab 0.1% / 0.4% 2.7% / 7.2% 2.7% / 7.2%

PMD assigns each violation a priority ranging from 1 to 3. A
priority of 1 indicates a serious warning, while a priority of 3
reflects less important warnings. We observe hit rate variances by
using warnings at a specific priority level. Detailed full and half
hit rates with priority combinations are shown in Table 6.

Bug sets correctly identified by PMD and BugMem (half hits)
were compared to see if the two sets are exclusive. Figure 15(a)
shows the entire bug hunk space of ArgoUML, comprised of
9,682 bug hunks. Among them, 3,900 (40.3%) of the bug hunks
are correctly identified by BugMem (see Table 4, half hit at option
3), and 625 (6.5%) are correctly identified by PMD (see Table 6,
half hit at priority 3 or less). We then observed the intersection of
the two correctly identified sets to see how these two tools can
complement each other. Surprisingly, only 3% of the total
identified hunks were common between PMD and BugMem.

Figure 15. Identified bug hunk sets of two projects using PMD
and BugMem.
Figure 15(b) shows bug hunk sets identified by BugMem and
PMD in Eclipse. Similar to ArgoUML, only 2.3% of the identified
hunks were common in Eclipse. Intersections for other projects
are shown in Table 7. The intersections of the identified bugs are
about 1.1~3% of the total bug hunks. The results indicate that the
hunk sets identified by PMD and BugMem are largely exclusive.
We conclude that BugMem is not meant to replace prior bug
finding tools. BugMem can find bugs that cannot be identified by
PMD and vice-versa. There is considerable synergy in using a
combination of vertical and horizontal bug finding tools together.
Table 7. Identified bug hunks (half hit) by PMD, BugMem,
and their intersection.

Project BugMem hit (%) PMD hit (%) BugMem ∩ PMD (%)
Argouml 3,900 (40.3%) 625 (6.5%) 286 (3%)
Columba 510 (19.3%) 166 (6.3%) 30 (1.1%)
Eclipse 8,982 (38.7%) 1,512 (6.5%) 536 (2.3%)

jEdit 1,615 (31.9%) 342 (6.8%) 118 (2.3%)
Scarab 862 (33.8%) 184 (7.2%) 55 (2.2%)

3.4 Limitations of Memories
3.4.1 Missing Memories.
Since there are limitations inherent in line-based text diffs, our
approach misses some kinds of bug fixes. For addition type hunk
pairs (|DH| = 0), it is hard to find the buggy part of the source
code. Suppose there is a bug fix change as shown in Figure 16.
The if condition is added to check whether foo is null, so the fix
hunk contains the if condition line and the bug hunk is empty. In
fact, print(foo.a) at revision n-1 is buggy code, since there should

BugMem
half hit
3,900
(40.3%)

PMD half hit 625 (6.5%)

BugMem ∩ PMD
286 out of 9,682 (3%)

BugMem
half hit
8,982
(38.7%)

PMD half hit 1,512 (6.5%)

BugMem ∩ PMD
536 out of 23,223 (2.3%)

(a) ArgoUML (b) Eclipse

be an if condition before it to perform the null dereference check.
Due to the empty bug hunk, this bug is missing in the memories.
Similar cases include addition of try/catch statements, addition of
an else branch, addition of a method call in a sequence of method
calls, etc. In ongoing work, we are developing a set of these
commonly occurring bug fix patterns.

print(foo.a);

if (foo!=null) {
 print(foo.a);
}

Revision n-1 Revision n
Figure 16. Addition hunk type example.

3.4.2 Limitation in the initial stage of a project
The bug fix memories approach is applicable only when a project
has been under development for awhile, and hence some bug fixes
have been collected in the memories. In contrast, horizontal bug
finding tools can work immediately from transaction 1 of a newly
started project. How many transactions must pass before BugMem
achieves a reasonable hit rate? True positive half hit rates (option
3) were observed over several thousand transactions, as shown
Figure 17. Hit rates dramatically increase around transaction 200-
900 and then continue growing slowly as transactions accumulate.
Waiting 200-900 transactions before using BugMem appears to be
a reasonable rule-of-thumb.

Figure 17. True positive half hit rates (option 3) over
transactions.

3.4.3 Only file-by-file basis
Our approach is based on comparing a source code file of two
versions, so the bugs captured and fixes suggested are only file-
by-file based. The cross-file relationships of bugs and fixes are
not revealed.

3.5 Threats to Validity
There are four major threats to the validity of this work.

Systems examined might not be representative. We examined 5
systems, and it is still possible that we accidentally chose systems
that have better (or worse) than average bug fix memories hit
rates. Since we intentionally only chose systems that had some
degree of linkage between change tracking systems and the text in
the change log (so we could determine bug fix changes and
hunks), we have a project selection bias. As our dataset increases
the severity of this threat will diminish.

Systems are all open source. The systems examined in this paper
all use an open source development methodology, and hence
might not be representative of all development contexts. It is
possible that the stronger deadline pressure, different personnel
turnover patterns, and different development processes used in
commercial development could lead to different memories hit
rates.

All systems are written in Java. Extracting components from
hunks and building memories requires a complete programming
language parser. As a result, BugMem currently only supports the
Java language. Other programming languages may have different
bug patterns and memories hit rates.

Bug fix data is incomplete. Even though we selected projects
that have change logs with good quality, we still are only able to
extract a subset of the total number of bugs (typically only 40%-
60% of those reported in the bug tracking system). The identified
bug-fix data is not the oracle set. It may include false positives
and false negatives. Incomplete bug fix data may increase (or
decrease) false positive rates, and prevent the development of
complete bug fix memories.

4. USING BUG FIX MEMORIES
Bug fix memories can be used to construct a bug finding tool and
perform IDE integration. A project’s bug fix memories can also
be used as a code example repository to provide awareness to
developers. We describe each application in detail.

4.1 Bug Finding Tool
We implemented a bug finding tool, BugMem, using memories of
bug fixes. Like other bug finding tools such as ESC/Java,
FindBug, and PMD, the BugMem tool is provided source code
and generates warning messages. Figure 18 shows example
BugMem output which indicates that using setSelectText() might
be a potential bug, and recommends changing it to insertTab()
based on previous bug fix instances. BugMem provides real fix
examples for identified bugs using fix data from the project’s bug
fix memories.
$ bugmem Test.java

Warning in addText at Test.java (line 10) Found 4 memories
Type: call "setSelectedText(.)"
==
org/gjt/sp/jedit/textarea/JEditTextArea.java at Rev: 114 in jedit
==
 - else setSelectedText("\t");
 + else insertTab();
 ……
Figure 18. Simple output of the BugMem command line tool.

An IDE (Eclipse) integration of BugMem has also been
implemented. During a source editing session using the IDE,
BugMem can point out potentially buggy lines and provide real
bug fix examples for those lines.

4.2 Bug and Fix Understanding
The memories of bug fixes are very useful for developers who are
new to software projects. Core developers who know and
remember all previous bugs and fixes may be able to avoid
making the same mistakes again. For new developers, however,
the memories of bug fixes are essential to guide their future
development. When they does not know the right method or

constant to use, automatically recovered memories of bug fixes
can help correct mistakes and suggest correct examples.

5. RELATED WORK
In this section, we discuses related work on finding bugs, locating
buggy areas, using project history to detect bugs, and using code
examples to assist development.

5.1 Bug Finding Tools
Many bug finding tools such as Bandera, ESC/Java [11], PMD
[5], JLint [1], and FindBugs [14] have been proposed and are in
wide use [25]. Most of these tools use syntactic pattern matching,
model checking, or theorem proving. They are similar to
BugMem in that they perform static analysis, find bugs, and then
suggest correct code. They are good at detecting commonly
known bugs, such as null dereferencing errors. However, they do
not detect high-level project-specific bugs.

While prior bug finding tools use built-in and pre-defined bug
patterns, BugMem learns project-specific bug patterns by
analyzing an ongoing development history. Additionally,
BugMem can suggest correct code to repair detected buggy code.

5.2 Using Project History to Detect Bugs
We used project histories to build memories to detect bugs and
suggest fixes. Project histories are widely used to build project
knowledge [7, 8], detect common bug patterns [18, 28], and find
association rules among bugs [27].

Hipikat is a tool that recommends relevant software artifacts to
developers based on project histories comprised of artifacts such
as source code changes, mailing list messages, bug tracking
entries, and written documentation [7, 8]. The Hipikat approach is
similar to BugMem in that it builds up a repository of information
from the project’s history. However, we explicitly identify bad
(bug) and good (fix) memories to detect potential bugs and
suggest fixes. Hipikat tries to provide related references to
developers rather than identify good or bad memories. Hipikat
uses lexical information (which is often automatically extracted)
to search memories while BugMem analyzes source code and
extracts components automatically.

Williams and Hollingsworth use project histories to improve
existing bug finding tools [28]. When a function returns a value,
using the value without checking it may be a bug. The problem in
this approach is that there are too many false positives, due to the
generation of warnings about all source code that uses an
unchecked return value. To remove these false positives, Williams
and Hollingsworth use project histories to determine what kinds
of function return values must be checked. For example, if the
return value of the function ‘foo’ was always checked in the
project history, but not checked in current source code, it is very
suspicious.

Livshits and Zimmermann combined software repository mining
and dynamic analysis to discover common method usage patterns
that are likely to encounter violations in Java applications [18].
Their approach employs dynamic analysis and is more specific in
finding violation patterns on method usage pairs. For example,
blockSignal() and unblockSingal() should always be paired in the
source code.
The approaches in [28] and [18] are vertical bug finding
techniques similar to ours, since they both analyze project-specific

patterns. However, they only focus on a small set of bug patterns,
such as the return value checking in [28] and the method usage
pairs in [18]. In contrast, BugMem uses all kinds of components
to build memories and detect bugs, and the kinds of components
keep growing along with the development process.

Song et al. find association rules among six bug types from
project histories [27]. Using these association rules, they can
predict future bugs. For example, suppose bug types A and B are
often found together in the history. Then if we find only bug type
A in the source code, we assume the code contains bug type B as
well. BugMem uses components from bug hunks to detect bugs,
and does not use any bug association rules. Using buggy
component association rules may increase hit rates; testing this
idea remains future work.

Brun and Ernst extract properties from buggy code and feed it to
machine learning algorithms to train a bug prediction model [4].
They use the Daikon invariant extractor [9] to extract invariant
information. Their approach is similar in that they try to capture
properties of buggy code and use it for future prediction. However,
they use invariant information for their code properties, while we
use syntactic information.

5.3 Identifying Buggy Areas
Identifying buggy code areas is quite useful for improving
software quality, and many approaches have been proposed. Some
approaches use software complexity metrics to identify buggy
areas, assuming that complex software has more potential bugs
[15, 23, 24]. Other approaches leverage a project’s bug history,
change history, or code co-changes to identify buggy areas [2, 12,
21]. Prediction accuracy for these approaches range from 60-
80%, but the areas predicted to be buggy are quite coarse, ranging
from modules to binaries, files, or functions. Even though
BugMem has lower accuracy (hit rate), it precisely locates bugs at
the line level and provides suggestions for fixes.

CP-Miner [17] is an approach that finds copy-paste code clone
regions in source code and detects “forgot-to-change” bugs in
them. In contrast, BugMem is able to identify bugs in any
changed source code region.

5.4 Using Code Examples to Assist
Development
Holmes and Murphy proposed an approach to extract structural
components from example code and use them to assist coding
when developers are working on similar code [13]. Mandelin et al.
introduces a jungloid mining approach that automatically
generates jungloid code fragments by mining library and example
code to provide common API use examples [19]. The input to the
jungloid mining is the input and output types of APIs. The output
of jungloid mining is examples of method call sequences
extracted from sample client programs or synthesized from API
method signatures. The jungloid mining approach focuses solely
on method calls. Source code search engines [16] are also widely
used to find source code examples. BugMem is similar to source
code example approaches, since we extract components from
source code examples in the history (hunks). However, we
identify both bad (from bug hunks) and good (from fix hunks)
examples, using them to detect bugs. Prior code example
approaches assume that all examples are good source code, but
the existence of as-yet undiscovered bugs in all projects means
that this is not true.

6. CONCLUSIONS
We presented BugMem, a project-specific bug finding tool using
memories of bug fixes. BugMem detects potential bugs and
suggests corresponding fixes. We evaluate BugMem by
computing bug fix memories hit rates. We found that 19.3%-
40.3% of bugs (half hit) appear repeatedly, and 7.9%-15.5% of
bug and fix pairs (full-hit) appear repeatedly in the history. We
also compared identified bug sets by PMD and by BugMem, and
found the two identified sets are mostly exclusive. We conclude
that prior bug finding tools and BugMem should be used together
to maximize bug detection capability.
Source code repositories such as CVS and Subversion are
typically used to store histories and make backups. In our view, a
source core repository contains knowledge that can be used to
discriminate between good and bad source code. So far, the
knowledge available in source code repositories has not yet been
fully leveraged. Our approach of computing memories of bug
fixes provides a useful way to extract and deploy the knowledge
latent in source code repositories. We harness this information to
improve the quality of source code and provide detailed guidance
to developers.

7. ACKNOWLEDGMENTS
We thank Gail Murphy and anonymous reviewers for their
valuable feedback on this paper. We thank Jennifer Bevan and
Aaron Tomb for their comments on this paper. We especially
thank Kevin Greenan and the Storage Systems Research Center at
UCSC for allowing the use of their cluster for our research.

8. REFERENCES
[1] C. Artho, "Jlint - Find Bugs in Java Programs," 2006,

http://jlint.sourceforge.net/.
[2] J. Bevan and E. J. Whitehead, Jr., "Identification of Software

Instabilities," Proc. of 10th Working Conference on Reverse
Engineering (WCRE 2003), Victoria, Canada, pp. 134-145, 2003.

[3] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey,
"Facilitating Software Evolution with Kenyon," Proc. of the 2005
European Software Engineering Conference and 2005 Foundations
of Software Engineering (ESEC/FSE 2005), Lisbon, Portugal, pp.
177-186, 2005.

[4] Y. Brun and M. D. Ernst, "Finding Latent Code Errors via Machine
Learning over Program Executions," Proc. of 26th International
Conference on Software Engineering (ICSE 2004), Scotland, UK,
pp. 480-490, 2004.

[5] T. Copeland, PMD Applied: Centennial Books, 2005.
[6] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach,

and H. Zheng, "Bandera: Extracting Finite-state Models from Java
Source Code," Proc. of 22nd International Conference on Software
Engineering (ICSE 2000), Limerick, Ireland, pp. 439-448, 2000.

[7] D. Cubranic and G. C. Murphy, "Hipikat: Recommending pertinent
software development artifacts," Proc. of 25th International
Conference on Software Engineering (ICSE 2003), Portland,
Oregon, pp. 408-418, 2003.

[8] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, "Hipikat: A
Project Memory for Software Development," IEEE Trans. Software
Engineering, vol. 31, no. 6, pp. 446-465, 2005.

[9] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M.
S. Tschantz, and C. Xiao, "The Daikon System for Dynamic
Detection of Likely Invariants," Science of Computer
Programming, 2006.

[10] M. Fischer, M. Pinzger, and H. Gall, "Populating a Release History
Database from Version Control and Bug Tracking Systems," Proc.
of 19th International Conference on Software Maintenance (ICSM
2003), Amsterdam, The Netherlands, pp. 23-32, 2003.

[11] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata, "Extended Static Checking for Java," Proc. of the
ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation, Berlin, Germany, pp. 234 - 245, 2002.

[12] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, "Predicting Fault
Incidence Using Software Change History," IEEE Transactions on
Software Engineering, vol. 26, no. 7, pp. 653-661, 2000.

[13] R. Holmes and G. C. Murphy, "Using Structural Context to
Recommend Source Code Examples," Proc. of 27th International
Conference on Software Engineering (ICSE 2005), St. Louis, MO,
USA, pp. 117-125, 2005.

[14] D. Hovemeyer and W. Pugh, "Finding Bugs is Easy," Proc. of the
19th Object Oriented Programming Systems Languages and
Applications (OOPSLA '04), Vancouver, British Columbia,
Canada, pp. 92-106, 2004.

[15] T. M. Khoshgoftaar and E. B. Allen, "Ordering Fault-Prone
Software Modules," Software Quality Control Journal, vol. 11, no.
1, pp. 19 - 37, 2003.

[16] Koders, "Koders - Source Code Search Engine," 2006,
http://www.koders.com/.

[17] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, "CP-Miner: finding Copy-
paste and Related Bugs in Large-scale Software Code," IEEE
Trans. Software Engineering, vol. 32, no. 3, pp. 176-192, 2005.

[18] B. Livshits and T. Zimmermann, "DynaMine: Finding Common
Error Patterns by Mining Software Revision Histories," Proc. of the
2005 European Software Engineering Conference and 2005
Foundations of Software Engineering (ESEC/FSE 2005), Lisbon,
Portugal, pp. 296-305, 2005.

[19] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman, "Jungloid
Mining: Helping to Navigate the API Jungle," Proc. of Conference
on Programming Language Design and Implementation (PLDI
2005), Chicago, Illinois, USA, pp. 48-61, 2005.

[20] A. Mockus and L. G. Votta, "Identifying Reasons for Software
Changes Using Historic Databases," Proc. of 16th International
Conference on Software Maintenance (ICSM 2000), San Jose,
California, USA, pp. 120-130, 2000.

[21] A. Mockus and D. M. Weiss, "Predicting Risk of Software
Changes," Bell Labs Technical Journal, vol. 5, no. 2, pp. 169-180,
2002.

[22] A. W. Moore, "Cross-Validation," 2005,
http://www.autonlab.org/tutorials/overfit.html.

[23] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting the
Location and Number of Faults in Large Software Systems," IEEE
Transactions on Software Engineering, vol. 31, no. 4, pp. 340-355,
2005.

[24] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Where the Bugs
Are," Proc. of 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis, Boston, Massachusetts, USA, pp.
86 - 96, 2004.

[25] N. Rutar, C. B. Almazan, and J. S. Foster, "A Comparison of Bug
Finding Tools for Java," Proc. of 15th IEEE International
Symposium on Software Reliability Engineering (ISSRE'04),
Saint-Malo, Bretagne, France, pp. 245-256, 2004.

[26] J. Śliwerski, T. Zimmermann, and A. Zeller, "When Do Changes
Induce Fixes?" Proc. of Int'l Workshop on Mining Software
Repositories (MSR 2005), Saint Louis, Missouri, USA, pp. 24-28,
2005.

[27] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, "Software
Defect Association Mining and Defect Correction Effort
Prediction," IEEE Trans. Software Engineering, vol. 32, no. 2, pp.
69-82, 2006.

[28] C. C. Williams and J. K. Hollingsworth, "Automatic Mining of
Source Code Repositories to Improve Bug Finding Techniques,"
IEEE Trans. Software Engineering, vol. 31, no. 6, pp. 466-480,
2005.

