
Kenyon-Web: Reconfigurable Web-based Feature Extractor

Sunghun Kim
University of Hong Kong Science and Technology

hunkim@cse.ust.hk

Shivkumar Shivaji, E. James Whitehead Jr.

University of California, Santa Cruz, USA

{shiv,ejw}@soe.ucsc.edu

Abstract
Research on Mining Software Repositories (MSR) has

yielded fruitful results in many Software Engineering

areas including software change comprehension, bug

prediction, and developer network recovery. When

performing MSR research, the first task is to extract

features corresponding to source code details from

repositories. Since reusable feature extraction tools are

not available, each MSR research group builds their own

extraction tool, a duplication of effort.

We introduce a reusable feature extractor, Kenyon-

web, for MSR research. Kenyon-web is fully

reconfigurable, pluggable, and serves most MSR related

tasks. In this report, we show the architecture of Kenyon-

web and demonstrate its utility by showcasing a sample

MSR task.

1. Introduction

Recently, Mining Software Repositories (MSR)

research has been an active research area within Software

Engineering, yielding rewarding results in areas such as

software change comprehension [3], bug prediction [7],

and developer network recovery [4].

The first step in conducting MSR research is the

extraction of artifacts, changes, history, and other

information from source code repositories, as part of the

feature extraction process. All MSR research groups need

a tool to perform such a process. Kenyon [2] is an

example of an extraction tool by the Univ. of California,

Santa Cruz, and APFEL [6] is another, developed by

Saarland University.

Some existing feature extraction tools provide a

certain degree of extension, but these are typically very

limited. For example, Churrasco et al extract information

from software repositories and provide extension points

to reuse [5]. However, data is stored in a predefined

metadata model and extensions are restricted to data

available within. Kenyon-web also supplies predefined

data. However, it also exposes raw data such as source

code and development history, which provides far more

flexibility for extensions. In addition, most previous tools

are command line based and require substantial pre-

configuration to enable proper use. As a result most

researchers in MSR decide to create their own feature

extractor rather than reuse existing ones. Thus, wheels are

being reinvented again and again.

To provide a reusable feature extractor, we designed

and implemented a web-based reconfigurable and

pluggable feature extractor, Kenyon-web. Kenyon-web

extracts each source code change from repositories and

stores information into a database management system

(DBMS). After extracting a change, users can add their

own plug-ins to perform desirable tasks. For example,

users can extract new information from a change and

store it in the DBMS for future use.

After extracting all changes from repository, users can

add multiple tasks as plug-ins to polish or process useful

information from the extracted data. All tasks are

configurable through a web interface based on the

Hudson build framework [1].

In this demo description, we show the overall

architecture of Kenyon-web and pluggable interfaces. In

addition, we demonstrate the usefulness of Kenyon-web

by performing an example MSR task, change

classification [8].

2. Kenyon-Web Architecture

Kenyon-web consists of the SCM repository input,

DBMS, revision actor, and after actor interfaces. All

interfaces are fully pluggable. The Kenyon-web

architecture is depicted in Figure 1.

Figure 1. Kenyon-web architecture. The circle of

arrows shows the checking out cycle. Revision actor

interface plugins can extend this cycle. After the cycle,

Kenyon-web launches user-defined after actor interfaces.

In the basic configuration, Kenyon-web provides

Subversion SCM repository access and DBMS interfaces.

Kenyon-web checks out revisions from a given SVN

repository. For each check out, the DBMS interface reads

checked out artifacts and metadata, and writes the data

into a DBMS specified by Kenyon-web. Details about

DBMS structures and their Java object mappings are

available on the Kenyon-web project web page.

As shown in the left cycle in Figure 1, Kenyon-web

then launches user pluggable interfaces called revision

actors. Users can design their own tasks for the checked

out revision.

After checking out all revisions and performing

DBMS and user defined revision actor interfaces,

Kenyon-web executes user defined after actor interfaces.

3. Pluggable Interfaces

In this section, we explain how to implement and use

revision actor and after actor interfaces.

Figure 2 shows the Java interface for the revision actor

interface. Users can simply implement the interface and

specify the implemented class to Kenyon-web using its

web interface. Then Kenyon will execute the class for

each revision check out.

public interface IRevisionActor {

public void setUp(KenyonExtractorBuilder kenyonExtractorBuilder,
AbstractBuild<?, ?> build, BuildListener listener, ActorContext context); ActorContext context);

public boolean needToCheckout(Transaction<?> tr);

public void visitBeforeCheckout(Transaction<?> tr);
public void visitAfterCheckout(Transaction<?> tr, File workspace);

Figure 2. Java interface for the revision actor.

An example revision actor would be counting artifacts

in each revision. Suppose a user wants to gather statistics

on the number of artifact number changes over revisions.

He can simply implement the artifact counter as a revision

actor and plug that into Kenyon-web. Kenyon-web will

then execute the counter for every revision.

Kenyon-web supports the after actor interface, which

is launched after checking out and processing all

revisions. This is good for tasks that need complete

revision information. For example, suppose we want to

draw an artifact count graph after collecting artifact

counts from all revisions. This task can be implemented

as an after actor interface.

Kenyon-web provides the Java after actor interface

shown in Figure 3. Users need to implement this Java

interface and specify the implemented class to Kenyon-

web.

public interface IAfterActor {

public boolean perform(KenyonExtractorBuilder kenyonExtractorBuilder,
AbstractBuild<?, ?> build, BuildListener listener, ActorContext context,
String args);

}

Figure 3. Java interface for the after actor.

4. Example MSR Task

To demonstrate the utility of Kenyon-web, this section

shows a MSR task involving change classification.

Change classification is an algorithm that identifies a

given change as clean or buggy using historical data. To

perform change classification, first we need to check out

changes from revisions and mark fix revisions. Based on

the fix revision marks, we identify buggy and clean

changes using annotation graphs. Finally, we extract

features from clean and buggy changes. These factors are

used to train a machine learner, which classifies changes

as clean or buggy. We demonstrate how to perform each

task using Kenyon-web.

First, we specify Subversion access information in

Kenyon-web. Then we implement fix identification tasks

as a revision interface. To simplify demonstration, we use

a regular expression to match fix revision logs. Suppose

there is a ‘fix’ keyword in the revision log, we mark the

revision as a bug fix revision in the DBMS.

We implement two after actor interfaces. The first one

finds buggy and clean changes based on previous fix

revision marks. The second after actor interface performs

data generation from buggy and clean changes for a

machine learner.

We implemented the actors and specify the full

implemented class names for Kenyon-web. Kenyon takes

care of the rest. Kenyon-web checks out each revision

and performs the fix identification task. After checking

out all revisions, Kenyon-web first performs the task to

identify buggy and clean changes. Finally, it executes the

task to generate data for a machine learner. The relevant

Kenyon-web is depicted in Figure 4.

Figure 4. Kenyon-web architecture with user defined

interfaces.

5. Conclusions

In this report, we show the overall architecture of

Kenyon-web, its pluggable interfaces, and an example of

using Kenyon-web for a MSR task. We believe Kenyon-

web is reusable for most MSR tasks. In addition to that,

the revision actor or after actor interfaces are also

reusable for other researchers, and could be used, for

example, to create standard benchmark sets for MSR

research. More information about Kenyon-web is

available from its project web page,

http://slugforge.cse.ucsc.edu/gf/project/kenyon/.

6. References
[1] "hudson: an extensible continuous integration engine," 2009,

https://hudson.dev.java.net/.

[2] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey, "Facilitating

Software Evolution with Kenyon," Proc. of the 2005 European Software

Engineering Conference and 2005 Foundations of Software Engineering

(ESEC/FSE 2005), Lisbon, Portugal, pp. 177-186, 2005.

[3] D. Beyer and A. Noack, "Clustering Software Artifacts Based on Frequent

Common Changes," Proc. of the 13th IEEE International Workshop on

Program Comprehension (IWPC 2005), St. Louis, Missouri, USA, pp. 259-

268, 2005.

[4] C. Bird, D. Pattison, R. D'Souza, V. Filkov, and P. Devanbu, "Latent social

structure in open source projects," Proc. of the 2006 ACM SIGSOFT

Foundations of Software Engineering (FSE 2006), Atlanta, Georgia, USA,

pp. 24-35 2008.

[5] M. D'Ambros and M. Lanza, "A Flexible Framework to Support

Collaborative Software Evolution Analysis," Proc. of Software Maintenance

and Reengineering, 2008. CSMR 2008. 12th European Conference on, pp.

3-12, 2008.

[6] V. Dallmeier, P. Weißgerber, and T. Zimmermann, "APFEL: A

Preprocessing Framework For Eclipse," 2005, http://www.st.cs.uni-

sb.de/softevo/apfel/.

[7] A. E. Hassan and R. C. Holt, "The Top Ten List: Dynamic Fault Prediction,"

Proc. of 21st International Conference on Software Maintenance (ICSM

2005), Budapest, Hungary, pp. 263-272, 2005.

[8] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, "Classifying Software Changes:

Clean or Buggy?," IEEE Transaction of Software Engineering vol. 34, no.

2, pp. 181-196, 2008.

