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ABSTRACT
In this paper, we propose a scalable instant code clone search
engine for large-scale software repositories. While there are
commercial code search engines available, they treat soft-
ware as text and often fail to find semantically related code.
Meanwhile, existing tools for semantic code clone searches
take a “post-mortem” approach involving the detection of
clones “after” the code development is completed, and hence,
fail to return the results instantly. In clear contrast, we com-
bine the strength of these two lines of existing research, by
supporting instant code clone detection. To achieve this
goal, we propose scalable indexing structures on vector ab-
stractions of code. Our proposed algorithms allow develop-
ers to detect clones of a given code segment among the 1.7
million code segments from 492 open source projects in sub-
second response times, without compromising the accuracy
obtained by a state-of-the-art tool.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and

reengineering

General Terms
Design, Management

Keywords
Clone detection, code search

1. INTRODUCTION
Clone detection helps software development and mainte-

nance tasks, as unmanaged code clones make program main-
tenance difficult and may cause inconsistent clone changes [13,
18]. Therefore, clone detection research has been an active
area for decades, and many practical techniques have been
proposed and widely used [2, 11, 15, 24, 26, 29].
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Existing code clone detection tools usually take a post-

mortem approach by detecting the clones “after” code de-
velopment is completed, as they mainly focus on the code

refactoring scenario. In such scenario, developers, for ex-
ample, may run a code clone detector once per month, and
based on the gathered clone information, they perform any
necessary maintenance work such as refactoring or fixing
inconsistent clone changes. In clear contrast, we focus on
developing a preventive way of finding clones during devel-
opment process, by enabling an instant and scalable search
for the clones of a given code segment. This type of instant
clone detection encourages to refer to well-tested existing
code, rather than reinvents code clones.

In this paper, we propose an instant clone search engine
that is scalable to the size of code repositories, e.g., detect-
ing the clones of a given code segment from 492 open source
projects (54 million LOC, 1.7 million code segments) in a
sub-second response time. Our detector considers structural
similarities between code segments, as in a post-mortem
clone detection tool, Deckard [11]. Our key technical con-
tribution is balancing the dual goals of instant response and
result quality, by exploiting a multidimensional indexing
structure, R∗tree [3], and proposing dimensionality reduc-
tion and I/O optimization techniques.

This type of instant detector would enable many interest-
ing applications. For example, when developers work on one
section of a very large project, instant clone search would
allow them to easily find and reference other similar code
pieces. Conversely, commercial code search engines, such as
Koders1 or Google code search2, may fail to suggest related
code, because they treat software as text [16, 17]. Using a
post-mortem clone detector is simply overkill for their pur-
pose, because post-mortem detectors usually focus on find-
ing all of the clone pairs, and it involves an unavoidable and
expensive computational cost. In summary, instant clone
search is a helpful approach to support rapid and evolving
software development.

We summarize our key contributions as follows:

. We address the problem of how to support instant clone
search.

. We develop clone indexing techniques to achieve sub-second
response times for large-scale real-life software repositories
without compromising clone search accuracy.

. For applications where the loss of some accuracy is accept-
able, we also propose an approximation scheme, achieving
a further speedup by trading off some accuracy.

1http://koders.com/
2http://www.google.com/codesearch/



The rest of the paper is organized as follows. Section 2 dis-
cusses the preliminaries, based on which Section 3 proposes
our algorithms. Section 4 reports our evaluation results.
Section 5 surveys related work, and Section 6 concludes this
paper.

2. PRELIMINARIES
This section discusses the preliminaries in code clone de-

tection (Section 2.1) and multidimensional indexing (Sec-
tion 2.2). Building on these preliminaries, we formally define
our problem in Section 2.3.

2.1 Code Clone Detection
There have been many code clone detection tools pro-

posed recently, including some tree-based techniques, which
abstract code segments as their corresponding parse trees or
abstract syntax tree (AST) [2, 29]. Building on this abstrac-
tion, clone detection is essentially tree similarity matching,
which is known to be inherently expensive [32], e.g., using
tree edit distance as a similarity notion.

To overcome this inherent complexity, Deckard [11] ap-
proximated such similarity notion by representing an AST
as multi-resolution numerical vectors, known as character-

istic vectors. In other words, each tree node is represented
as a vector representing the frequency of the syntactic ele-
ments in the code segment represented by its subtree. With
this representation, an expensive tree match can be approx-
imated as inexpensive vector matches. We adopt such ab-
straction as proposed in [11], since its simplicity makes it
possible to develop sophisticated techniques to improve scal-
ability.

2.2 Multidimensional Indexing
Characteristic vectors representing a code are often high-

dimensional, e.g., there are more than two hundreds different
syntactic element types in Java ASTs. It is thus non-trivial
to find matching vectors efficiently. To achieve sub-second
response times, we index the code repository using a mul-
tidimensional indexing structure, i.e., an R∗tree [3], which
have been widely adopted in database literature.

2.2.1 Naive Adoption
Intuitively, characteristic vectors can be mapped into mul-

tidimensional points, which can then be indexed using a mul-
tidimensional index structure such as an R∗tree. A query,
also represented as a vector, corresponds to another point,
such that finding clones corresponds to finding the k-nearest
neighbors (kNNs) of the query point, which has been ac-
tively studied in the database community [8, 6].

An R∗tree is a height-balanced tree data structure, where
each node contains a variable number of entries, up to some
pre-definedmaximum, i.e., node capacity. For non-leaf nodes,
each entry contains two pieces of data: a pointer to a child
node, and the minimum bounding rectangle (MBR) of all
entries within this child node. For leaf nodes, each entry
has a pointer to a raw record stored on disks, and the MBR
of this raw record.

To briefly illustrate how this structure can be used to
support a kNN query, Figure 1 shows an example of an
R∗tree for 2-dimensional data points. To find kNNs of the
query point q, this R∗tree can be traversed in a best-first
search manner, by initially storing the root node’s entries
in the queue and iteratively retrieving the closest entry in
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Figure 1: A kNN query on an R∗tree for 2-
dimensional points

the queue (with respect to Euclidean distance) and enqueu-
ing its child node’s entries. This type of search can termi-
nate when the top k closest entries are all pointing raw data
points, e.g ., p5 and p8 when k = 2.

2.2.2 Adoption with Dimensionality Reduction
Though adopting an index discussed above enables to find

kNN with a tree traversal and avoid a sequential scan, such
traversal can be more costly than a scan, when the dimen-
sionality is high. This problem is known as the dimensional-

ity curse problem [19]. To avoid this problem, dimensional-
ity reduction techniques are typically used [20, 27], to select
only a few important features and reduce the overall dimen-
sionality.

However, in a dimension-reduced space, a kNN search re-
sult may differ from that in the original space. To illustrate
this new challenge with example data in Figure 1, suppose
we simply reduce the dimensionality of the dataset to one,
by projecting points onto the x-axis. The closest point in
this reduced space is then p8 (i.e., false positive), while the
actual closest point in the original space is p5.

Due to this challenge, in order to get the k nearest results
in the original space from the reduced space, we first need to
identify k′ candidates that are guaranteed to contain all the
correct k results (k′ ≥ k). For instance, in our projection
example, retrieving k = 1 nearest point in the reduced space
(i.e., based on the projection on x-axis) will retrieve false
positive p8, but retrieving k′ ≥ 2 is guaranteed to include
the correct answer p5. To guarantee that k′ candidates do
not exclude any correct result, i.e., no false negatives, the
following lower-bounding property should hold.

Definition 1 (Lower-bounding property). Given a

dimensionality reduction function F () and two data vectors

v1 and v2, distance function df () in the reduced space and

distance function do() in the original space should satisfy:

df (F (v1), F (v2)) ≤ do(v1, v2)

If the dimensionality reduction function F () satisfies Def-
inition 1, we can obtain the k′ candidates as follows: First,
we find the kNNs of F (q) on the reduced space. We then
sort these kNNs by their “real” distances to q on the original
space, and choose the kth nearest vector vk from these kNNs.
Finally, we identify all points v satisfying df (F (q), F (v)) ≤
do(q, vk). This can be done through a simple ε-range search



on the reduced space, with ε = do(q, vk), and these candi-
dates are guaranteed to have all top-k results, as formally
proved in [20]. We then rank these candidates by their “real”
distances to find the correct k nearest results.

2.3 Problem Definition
This section formally defines the top-k code clone search

problem. We define the code segments and the characteris-

tic vectors in Definition 2 and 3. Definition 4 then defines
the distances between vectors. Based on Definition 4, Defi-
nition 5 defines top-k code clones of a query code segment.

Definition 2 (Code segments). Given a code S, its
AST T , and a threshold minT, if a subtree Ti of T contains

at least minT nodes, then Ti’s corresponding part in S is a

code segment.

Definition 3 (Characteristic vectors). Given a code

segment Si and the AST Ti of Si, the characteristic vector

vi = 〈ci(1), ci(2), · · · , ci(d)〉 of Si consists of occurrence coun-

ters ci(j) of syntactic elements in Ti.

Definition 4 (Distances between vectors). Given

two d-dimensional vectors v1 and v2, the distance ‖v1, v2‖
between v1 and v2 is their L2-norm,

‖v1, v2‖ =
√∑d

i=1 (c1(i) − c2(i))2.

Definition 5 (Top-k code clones). Given a set V of

characteristic vectors, a query vector q, and the retrieval size

k, top-k clones T Ck(q) ⊂ V is a set of vectors T Ck(q) =
{v1, v2, · · · , vm}, where vi is the ith closest vector from q,
m ≥ k, and ‖q, vi‖ = ‖q, vk‖ for ∀i satisfying k < i ≤ m.

A top-k code clone search query q retrieves a set T Ck(q),
and T Ck is used as its shorthand. For notational simplicity,
we use T Ck to represent both code clones and their corre-
sponding vectors interchangeably.

3. INSTANT CODE CLONE DETECTION
This section proposes indexing structures and algorithms

to solve the top-k code clone search problem. As a base-
line, Section 3.1 discusses a sequential scan algorithm, Scan.
Section 3.2 then proposes a sub-linear algorithm, FrTCD, us-
ing an R∗tree index with dimensionality reduction. Though
FrTCD demonstrates reasonable scalability in medium-scale
datasets, it still incurs prohibitive I/O costs. We thus study
I/O optimization techniques to further improve the overall
performance and build an enhanced algorithm, InTCD, upon
the optimized R∗trees in Section 3.3. Lastly, Section 3.4 dis-
cusses how to further boost performance for scenarios where
compromising some accuracy can be tolerated.

3.1 Baseline: Sequential Scan
One naive solution to find the clones of a given query

code segment would be adopting an existing clone detector,
identifying “clusters” of clones as their results. From these
results, we can identify the cluster to which the given query
code belongs and consider other codes in the same cluster
as its clones. However, considering we only need one such
cluster, finding all clusters is an overkill.

Alternative solution is to adopt Locality Sensitive Hash-

ing (LSH) [7], as used by Deckard [11] to efficiently find
near neighbors (similar vectors) of each characteristic vector.

However, LSH is not an exact nearest-neighbor algorithm,
as we will empirically show later in Section 4.4.

We thus adopt a straightforward baseline approach for
the exact computation, using a sequential scan, called Scan,
which simply reads the entire repository sequentially and
updates T Ck, as Algorithm 1 illustrates.

Algorithm 1: Scan (q, k)

Input : query vector q, retrieval size k
Output: set T Ck of vectors of top-k clones
initialize T Ck ← {}1

for each v ∈ V do2

UpdateClones (T Ck, k, q, v);3

return T Ck4

Specifically, Scan sequentially tests each characteristic vec-
tor v ∈ V. For each v, Scan tests that v is not farther than
any vector in the currently known top-k list T Ck. If v is
not farther, Scan updates the list T Ck, as Algorithm 2 illus-
trates.

Algorithm 2: UpdateClones (T Ck, k, q, v)

Input : set T Ck, retrieval size k, query q, vector v
/* tci ∈ T Ck denotes the ith nearest vector in

T Ck, from q */

if |T Ck| < k then T Ck ← T Ck ∪ {v}1

else if |T Ck| ≥ k and ‖q, v‖ ≤ ‖q, tck‖ then2

T Ck ← T Ck ∪ {v}3

remove ∀tci ∈ T Ck farther than tck from q4

3.2 Filtering-then-Ranking Clone Detection
This section proposes a filtering-then-ranking top-k code

clone search algorithm, called FrTCD, using an R∗tree index.
However, naively adopting this type of index structure in-
curs undesirable higher cost compared to a simple sequential
scan, as discussed in Section 2.2.

To overcome this challenge, we first discuss a dimension-
ality reduction technique in Section 3.2.1. We then discuss
how to build an index on this reduced space (Section 3.2.2)
and then execute top-k clone queries (Section 3.2.3).

3.2.1 Dimensionality Reduction
For a given set V of D-dimensional N characteristic vec-

tors {v1, v2, · · · , vN}, our goal in dimensionality reduction is
to generate lower-dimensional vectors V ′ = {v′1, v

′
2, · · · , v

′
N},

which satisfy the lower-bounding property (Definition 1), and
make our algorithms efficient.

As discussed in Section 2, it is important to preserve the
lower-bounding property to ensure that we can retrieve can-
didates including all of the correct k results, by searching
the reduced space only. Formally, for all vi and vj ∈ V,
and their corresponding reduced vectors v′i and v′j , the dis-
tances measured in the original space and the reduced space
should satisfy ‖v′i, v

′
j‖ ≤ ‖vi, vj‖. We can trivially show

that selecting any D′-dimensional subspace of the original
D-dimensional space ensures the lower-bounding property.

However, not all such subspaces are equally effective. A
desirable subspace should reflect the original distances be-
tween vectors, or more formally, minimize the sum ∆ of



differences δi,j ,

∆ =
∑

∀i,∀j,i6=j

δi,j =
∑

∀i,∀j,i6=j

‖vi, vj‖ − ‖v
′
i, v

′
j‖,

between two distances measured at the original space and
the subspace respectively. Finding such subspace is known
to be NP-hard [23], which motivates us to develop its ap-
proximation schemes.

A straightforward approximation would be a greedy strat-
egy that iteratively picks the dimension that reduces ∆ the
most. However, this strategy requires recomputing ∆ for
all remaining dimensions, at each iteration. To avoid such
recomputations, we propose to compute the variances of all
dimensions once and select the D′ dimensions with the high-
est variances.

To demonstrate that this variance-based approach is not
only more efficient, but also as effective as the greedy strat-
egy discussed above, we briefly compare 10-dimensional sub-
spaces selected from 261-dimensional characteristic vectors
obtained from real-life java source codes (7,195 files) in Ta-
ble 1. The results in the table indicate that both approaches
produce nearly identical results, while the variance-based
method incurs a significantly lower cost.

Table 1: Top 10 selected dimensions

Variance-based Greedy strategy

1 identifier identifier
2 ID TK ID TK
3 unary expression unary expression
4 multiplicative expression multiplicative expression
5 additive expression additive expression
6 relational expression shift expression
7 shift expression relational expression

8 equality expression equality expression
9 conditional expression conditional expression

10 assignment expression assignment expression

3.2.2 Index Building
We now discuss how we can build an R∗tree in the dimension-

reduced space. A naive way to create an index is to insert
one vector at a time, which incurs an expensive update on
the index tree per each vector insertion. In contrast, a bulk

loading approach amortizes the update cost, by inserting the
entire dataset at once [5, 14, 21].

Existing bottom-up bulk loading algorithms first parti-
tion the entire dataset and build each partition as a leaf
node. Then to build non-leaf nodes, they iteratively apply
the same partitioning process to the resulting nodes, until we
have only one partition including the entire dataset, which
corresponds to the root node of the R∗tree. Bulk loading
tightly packs the index structure to enable fast lookups, and
it is reported to boost the building performance by hundred-
folds [4].

In particular, we revise a state-of-the-art bottom-up R∗tree
bulk loading algorithm, STR [21], to apply to our problem.
STR partitions the given dataset into MBRs, by recursively
subdividing each dimension into the same number of slices.
Straightforwardly adopting this partitioning policy is not de-
sirable for the dimension-reduced characteristic vectors, as
the variance differs significantly over dimensions. That is, in
one dimension, points are highly clustered in a small range,
while in another, points are well scattered. For such data,

partitioning each dimension into the same number of slices
would render non-square rectangles (with one side signifi-
cantly larger than the other), which incurs higher I/O cost
than squared blocks, for the L2 distance function used in
our work.
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(a) STR packing (b) Our packing

Figure 2: STR partitions the data into 9 MBRs,
while our packing algorithm partitions the data into
8 MBRs. Their utilizations are 83.3% and 93.75%
respectively.

To illustrate, consider 30 points in a two-dimensional space,
where the node capacity C of the tree is 4, i.e., each tree
node may hold at most 4 entries, and the x values are much
more scattered than y values (Figure 2). At the bottom level
of the tree, this dataset should be partitioned into d 30

4
e = 8

or more MBRs. To do this, STR partitions the space by di-
viding each dimension into an equal number of slices, i.e., 3
slices containing the same number of data points, to render
9 MBRs (Figure 2(a)). In contrast, we divide the dataset
into 8 MBRs (2-by-4 as illustrated in Figure 2(b)), to sig-
nificantly enhance the node utilization of STR, i.e., 83.3%
( 30
9×4

) into 93.75% ( 30
8×4

).
Formally, for aD-dimensional dataset containingN points,

we subdivide the ith dimension into si = dri/Re slices, where
ri is the value range, computed as the difference between
the maximum and minimum values of the ith dimension. In
other words, a dimension with a high ri is highly scattered.
Assuming points are uniformly scattered, R can be com-
puted as

∏D

i=1
ri
R

= N
C
. Algorithm 3 formally describes the

data partitioning process.

Algorithm 3: DataPartitioning (E,C,rrr)

Input : entries E = {e1, · · · , en}, node capacity C,
value ranges rrr = 〈r1, · · · , rd〉

Output: partitioned entries E

R← D

√
C
N
·
∏D

i=1 ri; si ← dri/Re, for ∀i ∈ {1, · · · , D}1

repeat2

for each si do3

si ← si − 1 if it does not incur an overflow4

until any decrease incurs an overflow5

Slice (E, 1, 〈s1, · · · , sd〉)6

For a given set of entriesE and its value ranges 〈r1, · · · , rd〉,
Algorithm 3 first computes R and 〈s1, · · · , sd〉 (Line 1).
Then Algorithm 3 tries to decrease si values (Lines 2-5),
to further enhance the node utilization. In our observation,
as si takes ceiling and thus overestimates the right number
of subdivisions in each dimension, the total number of parti-
tions,

∏D

i=1 si, may become too large, i.e., incurring the low
node utilization. To address this problem, Algorithm 3 de-
creases each si by one, until any decrease incurs an overflow,
i.e., with node utilization higher than 100%.



Algorithm 4: Slice (E, i,sss)

Input : entries E, dimension index i, sss = 〈s1, · · · , sd〉
sort E according to the ith dimension1

subdivide E into {E′
1, · · · , E

′
si
}2

if i < D then3

for each E′
i do Slice (E′

i, i+ 1, 〈s1, · · · , sd〉)4

Once the “tightest” si values are determined, we recur-
sively subdivide each dimension as described in Algorithm 4.
Algorithm 4 first sorts the set of entries E in the ascending
order of the ith dimension, then divides E into si subdivi-
sions, namely E1, · · · , and Esi . We make sure the first si−1
subdivisions to contain d|E|/sie where |E| denotes the num-
ber of entries in E. Esi contains the remaining entries.

To build an R∗tree, we first partition the reduced vectors
using Algorithm 3. The resulting partitions become leaf
nodes. Then we perform Algorithm 3 again on the MBRs
of the leaf nodes. In this case, we sort them using their
centers as representative points of the MBRs. We repeat
this partitioning process until we have only one partition,
which corresponds to the root of the tree.

3.2.3 Two-phase Query Processing
This section proposes the filtering-then-ranking top-k code

clone search algorithm, FrTCD, to evaluate top-k code clone
queries. Basically, FrTCD works in two phases of filtering and
ranking as Algorithm 5 formally states.

Algorithm 5: FrTCD (q, k, T )

Input : query vector q, retrieval size k, R∗tree T
Output: set T Ck of vectors of top-k clones
q′ ← the reduced vector of q1

N ← the k nearest neighbors of q′; /* from T */2

v′k ← the kth nearest vector in N3

/* by the distances on the original space */

ε← ‖q, vk‖; C ← {v
′ : ‖q′, v′‖ ≤ ε}; /* from T */4

initialize T Ck ← {}5

for each v corresponding to v′ ∈ C do6

UpdateClones (T Ck, k, q, v);7

return T Ck8

In the filtering phase (Lines 1-4), for a given query vector
q, FrTCD identifies candidate vectors C, using a combination
of kNN and range search on the reduced space. More pre-
cisely, FrTCD finds the kNNs, N , of q′, by traversing the
R∗tree in a best-first search manner (Line 2), and computes
their distances to q in the original space to choose the kth

nearest vector v′k among N (Line 3). ‖q, vk‖ denotes the
actual distance between the given query q and the charac-
teristic vector vk ∈ V corresponding to v′k.
FrTCD then performs an ε-range search, where ε = ‖q, vk‖,

to find all the reduced vectors C within the distance ‖q, vk‖
from q′ (Line 4). As ‖q, vk‖ ≥ ‖q

′, v′k‖, C is guaranteed
to contain correct k results. We can thus prune out the
remaining vectors V ′ \ C, as they are farther away from q,
compared to vk.

In the ranking phase (Lines 5-7), FrTCD computes the dis-
tance of each characteristic vector v corresponding to v′ ∈ C,
from q. Observe that, unlike Scan that computes the dis-

tance for all objects, FrTCD computes the distance of a very
small subset C of raw data records (N ⊂ C), i.e., a sub-linear
algorithm. After FrTCD computes the distances of these can-
didates to q, we can finalize the list of top-k code clones.

3.3 Interleaved Clone Detection
Though we empirically observe that FrTCD already achieves

an acceptable efficiency for medium-scale datasets, as we
will later show with our extensive evaluation results, we can
also observe that FrTCD has room for further improvements,
as much I/O costs are wasted on random accesses on data
records– According to our experimental results, 80.5% of
the overall response time of FrTCD (3.4 seconds to find the
top-20 code clones in the repository of 1.7 million vectors)
corresponds to the random access cost.

Based on this observation, we study two I/O optimization
techniques, (1) reducing the number of random accesses and
(2) reducing the cost of each access.

3.3.1 Vector Packing
We first study how we reduce the number of random ac-

cesses by “packing” a group of records to be accessed to-
gether, i.e., those with similar values. This type of packing
allows us to reach multiple records with a single random ac-
cess followed by cheaper sorted accesses, which incurs a sig-
nificantly lower cost than performing a random access per
each record. For one-dimensional data, this packing can be
implemented straightforwardly, by storing raw data records
in the same order as the index key. However, for multi-
dimensional data, it is non-trivial to identify an effective
one-dimensional sorted order to store records.

Figure 3 illustrates a scenario, reading 20 data records
within ε from q requires 20 accesses. However, if these points
are packed into two blocks, B1 and B2, we only need two
random accesses to get to the beginnings of the blocks, and
the remaining records can be retrieved by cheaper sequential
accesses. While this strategy may incur the overhead of
retrieving few more false positive records, the overall I/O
cost is greatly reduced, as we also empirically validate in
Section 4.

q

B1

B2

ε

Figure 3: A range query example

For this packing, we apply the same scheme proposed for
bulk loading in Section 3.2.2, and store these blocks in sev-
eral files. After the packing is done, we simply build an
R∗tree on the MBRs of the blocks. Each MBR is computed
in the reduced D′-dimensional subspace, and the data blocks
contain the original D-dimensional vectors. As we use the
same scheme in Section 3.2.2 for this packing, data inser-
tion and deletions can be handled in a similar way that the
R∗trees do without the packing.

3.3.2 Single-phase Query Processing
This section proposes InTCD, adopting the vector packing

scheme discussed in the previous section. Specifically, we
implement InTCD to (1) further reduce the number of ran-



dom accesses to index nodes by interleaving the kNN search
and the range search in the filtering phase of FrTCD, and (2)
reduce the cost of random accesses.

Interleaved Index Traversal : Recall that FrTCD performs
a best-first search to find the kNNs in the reduced space,
then performs a range search to find candidates. After this
candidate selection, FrTCD reads the raw records of the can-
didates to compute the real distances from the query. In
contrast, InTCD interleaves these two steps, by concurrently
accessing raw records “during” the index traversal.

Basically, InTCD traverses the index in the reduced space
in the same manner as FrTCD. However, during the traversal,
when a leaf entry is reached, InTCD accesses the raw data
block pointed by the leaf entry, without waiting for the index
traversal to complete, as the cost of reading few extra raw
data is much affordable now with vector packing. Whenever
data records are accessed from the leaf entry, InTCD updates
a sorted list, T Ck, of the current known top-k clones, and
we denote the current kth-NN in the list as tck.

Our key observation is that tck can be used as a pruning
boundary, as we can safely prune out both non-leaf and leaf
entries that are farther than tck. As more data records are
accessed, T Ck converges to the actual top-k results. In this
interleaved traversal, each index node is accessed at most
once, which enables to outperform FrTCD accessing some in-
dex nodes twice during the kNN and the range search re-
spectively.

Algorithm 6 formally describes this process of InTCD.

Algorithm 6: InTCD (q, k, T )

Input : query vector q, retrieval size k, R∗tree T
Output: set T Ck of vectors of top-k clones
/* tci ∈ T Ck denotes the ith nearest vector in

T Ck, from q */

q′ ← the reduced vector of q1

T Ck ← {}; Q ← {}; H ← {entries within the root of T}2

while H is not empty do3

e← H.pop()4

if |T Ck| < k or mindist (q′, e) ≤ ‖q, tck‖ then5

if e is not a leaf then H.push(children of e)6

else7

Q.push(e)8

if |Q| >W then9

E ← pop block pointers from Q10

for each v ∈ a block of E do11

UpdateClones (T Ck, k, q, v);12

while Q is not empty do13

E ← pop block pointers from Q14

for each v ∈ a block of E do15

UpdateClones (T Ck, k, q, v);16

return T Ck17

Specifically, to implement this single-scan best-first search,
a min heap H of e is maintained in the ascending order of
mindist (q′, e), where q′ denotes the reduced vector of query
q, e is an entry of the R∗tree index, and mindist (q′, e) de-
notes the shortest distance between q′ and e (Figure 4).

At the beginning, the entries within the root of T are
pushed into H (Line 2). Then iteratively, the entry e in
H with the minimal mindist (q′, e) is processed. If the
mindist (q′, e) is no farther than the distances of the cur-

e

q3

d1

d2

q1

q2

Figure 4: mindist (qi, e) in a 2-dimensional space.
mindist (q1, e) = d1, mindist (q2, e) = d2, and
mindist (q3, e) = 0.

rent tck to q, we continue the iterations. Otherwise, we can
safely ignore e (Line 5).

If mindist (q′, e) ≤ ‖q, tck‖, we test if e is a leaf entry or
not. If e is not a leaf, then the entries within its child node
are pushed into H (Line 6). Otherwise, we process the raw
data block pointed by e.

When processing raw data, a naive approach would be
reading each raw data block right away, which incurs high
random seek costs. Instead, to reduce the cost of random
accesses, we devise an effective scheduling technique, called
delayed loading, by adopting the idea of Circular SCAN disk
scheduling [28].

Delayed Loading : Specifically, we propose a delayed load-
ing scheme, which delays the reading the block of e until
we collect multiple blocks to read as the name itself sug-
gests. Figure 5 illustrates how this scheme works in a sce-
nario involving the reading of four blocks B1, B2, B3, and
B4. They are stored on the disk in a sorted order, and the
mindists of their corresponding entries e1, e2, e3, and e4 sat-
isfy mindist (q′, e2) < mindist (q′, e4) < mindist (q′, e3) <
mindist (q′, e1).

B1 B2 B3 B4

Without delayed loading

With delayed loading Sequantial access

Random access

Figure 5: Effectiveness of delayed loading

A naive solution would be reading each block one at a
time, which incurs four expensive seeks, but instead, we can
read these four blocks at once, in the forward direction as in
Figure 5, which incurs cheaper seeks followed by sequential
scan.

In Algorithm 6, we maintain a delayed loading queue Q,
which contains block pointers e in the ascending order of
mindist (q′, e). Whenever we have a raw data block to
read, i.e., when a leaf entry e is reached, we push it into
Q (Line 8). We then delay reading these blocks until we col-
lect a sufficient number of entries in Q, determined by the
given threshold W, which we set as 50 in our experiment
(Line 9). When this happens, InTCD then reads these blocks
in batch (Lines 11-12). Once the traversal terminates, we
process the remaining blocks in Q (Lines 13-16).

3.4 Approximate Clone Detection
For applications where some accuracy compromise can be

tolerated, approximation is a good strategy to trade accu-
racy for an even higher performance. In this section, we
discuss how we study an approximation scheme, empirically



achieving a 19 times speedup against InTCD, while compro-
mising no more than 30% of the accuracy.

Specifically, we propose an approximate top-k code clone
search algorithm ApTCD, which efficiently identifies approxi-
mate answers without reading or processing high-dimensional
data records V. Instead, we read further dimensionality re-
duced records V ′ and issue a dimensionality-reduced query
q′.

Intuitively, as dimensionality of V ′ increases, efficiency de-
creases but accuracy increases. To balance this trade-off,
we need to effectively select the subspace V ′. This goal is
similar to that of the dimensionality reduction we discussed
for exact algorithms (Section 3.2.1), our approach should
be different, as the reduction this time is applied upon al-
ready dimensionality-reduced space. As a result, applying
the same technology would be redundant and ineffective.

From the reduction results reported in Table 1, obtained
by variance-based ranking, we observed that features with
similar variances tend to be correlated from one another. For
example, features identifier and ID TK with the same vari-
ance were also perfectly correlated with each other, which
suggests that these two features can be reduced into one
feature without any loss of accuracy.

There have been many reduction techniques studied for
aggregating correlated features, such as Principal component

analysis (PCA) [12] and Piecewise aggregate approximation

(PAA) [31]. In this research, which aims at scalability, we
consider PAA with higher scalability.

Figure 6 illustrates how PAA reduces the dimensionality.
In the figure, elements in v are sorted in a descending order
based on the variances of their corresponding dimensions.

71 71 59 52 43 46 30 32 28 17 12 10sorted vector

142 111 89 62 45 22

201 141 90 39

253 151 67

ω = 2

ω = 3

ω = 4

low variancehigh variance

v:

Figure 6: PAA example

To illustrate, consider a scenario of reducing v ∈ V into
a 3-dimensional vector v′. Our variance-based dimension
reduction method for FrTCD and InTCD simply chooses v′ =
〈71, 71, 59〉. PAA uses a fixed size disjoint window ω to
divide v, then aggregates each window. Subsequently, if ω =
2, v′ = 〈142, 111, 89〉. Similarly, if ω = 3, v′ = 〈201, 141, 90〉.

Once we reduce the dimensionality, to evaluate approxi-
mate top-k queries, we simply build an R∗tree over these re-
duced vectors V ′, as shown in Section 3.2.2. We can then find
the approximate results by traversing the tree in a best-first
manner (Algorithm 7), similarly to our exact algorithms.

As we later discuss in Section 4, our experimental results
indicate that applying PAA is effective for achieving even
higher performances, e.g., 88 times speedup while compro-
mising 58% of accuracy against InTCD when D = 12 and
ω = 4.

4. EXPERIMENTAL EVALUATION
This section empirically evaluates our proposed algorithms.

First, we describe how we generate datasets and queries in
Section 4.1. Second, we evaluate the efficiency and scalabil-
ity of our algorithms in Section 4.2. Third, we validate the
effectiveness of our approximate query processing scheme

Algorithm 7: ApTCD (q, k, T )

Input : query vector q, retrieval size k, R∗tree T

Output: set T̃ Ck of approximate top-k clones
q′ ← the reduced vector of q1

T̃ Ck ← {}; H ← {root of T}2

while H is not empty do3

e←H.pop()4

if mindist (q′, e) ≤ ‖q′, t̃ck‖ then5

if e is not a leaf then H.push(children of e)6

else UpdateClones(T̃ Ck, k, q
′, e);7

return T̃ Ck8

in Section 4.3. Lastly, we compare our proposed indexing
structure with Locality Sensitive Hashing (LSH) that is used
by a state-of-the-art post-mortem clone detector, Deckard
(Section 4.4). All experiments were carried out on a machine
with a Pentium IV 3.2GHz processor, with 1GB of memory,
running Linux.

4.1 Experimental Setup
We generate characteristic vectors, in the same way de-

scribed in [11] for Deckard, from two real-life java code
repositories. The first repository contains 7,195 java files
from JDK 1.6.0 Update 13, consisting of 2,075,573 lines of
code total, and the second repository contains 288,846 java

files (54,709,384 lines) from 492 Java open source projects
hosted on SourceForge, Tigris.org and GoogleCode.

From these repositories, we generated six vector datasets,
two from the JDK code set (denoted as JDK3,5), and four
from the open source project code set (denoted as OSP3,5,7,9),
by varying the parameter minT of Deckard. The dimen-
sionality of each vector is 261. Table 2 summarizes the sizes
of the resulting vector datasets and the minT setting. Once
these vector sets were generated, we randomly chose one
hundred vectors from each dataset to use as our queries.

4.2 Efficiency & Scalability
To evaluate the efficiency and scalability, this section re-

ports index building time and query execution time for vary-
ing retrieval sizes k and dataset sizes |V|. For this set of
experiments, we empirically chose 20 as the index dimen-
sionality. We increase k up to 80 to test scalability, though
we may use very small k in practice.

Table 2: Index building time for varying |V|

Dataset minT |V|
Building time (s)
FrTCD InTCD

JDK5 50 36,658 0.563 0.867
JDK3 30 60,582 0.793 1.517
OSP9 90 612,926 8.968 34.055
OSP7 70 783,933 11.619 46.725
OSP5 50 1,072,598 16.939 72.903
OSP3 30 1,696,806 27.653 128.118

Table 2 summarizes index building time of InTCD and
FrTCD. This table only shows the building time, excluding
the data processing time for vector extraction and dimen-
sionality reduction. Observe from the table that InTCD takes



a relatively longer time than FrTCD to accomplish the vector
packing process, as vectors packed into blocks need to be
stored, causing extra I/Os. However, owing to this packing
scheme, InTCD performs better than FrTCD in the later ex-
periments. Both the indexes for FrTCD and InTCD can be
built in minutes, which is acceptable considering that index
creation is a (1) one-time and (2) offline process.

The block sizes for these two datasets were tuned empiri-
cally. For JDK datasets, the block size was set as 8KB and
each file contained at most 32 blocks, as the performance
was optimal with such setting. Similarly, for OSP datasets,
we set the block size and file size as 384KB and 120 blocks
respectively.
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Figure 7: Querying time for varying |V|, JDK

datasets, k = 20 (log-scaled). The table lists the
average number of clones in T C20.

Figure 7 shows the average querying time for varying |V|
using JDK datasets, and the table shows the average number
of vectors in T Ck. (This number can be larger than k due
to the ties in the results.) Both FrTCD and InTCD are at
least 7 times faster than Scan. Though in this medium-
scale dataset, the performance gain of InTCD over FrTCD is
less significant, this type of performance gap significantly
increases as the scale of the data increases, as we later show
with the larger datasets in Figure 8.
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Figure 8: Querying time for varying |V|, OSP

datasets, k = 20 (log-scaled).

Figure 8 shows the average querying time for varying |V|,
using OSP datasets. Compared to Figure 7, InTCD achieves
higher speed-up over FrTCD, i.e., 31.7 times faster than Scan,
which suggests that our proposed I/O optimization tech-
niques are more effective in larger-scale datasets and play a
crucial role in enhancing the overall efficiency.

Figure 9 shows the querying time over varying k, using
OSP3 dataset. As Scan reads the entire data once regardless
of k, its performance is constant over varying k. In clear
contrast, InTCD and FrTCD are 36 and 7.3 times faster than
Scan when k = 10. Considering that k is typically much
smaller than the data size in general search scenarios, this
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Figure 9: Querying time over varying k, OSP3

dataset (|V|=1,697K).

“progressive” behavior of our proposed algorithms, incurring
smaller cost for smaller k, is highly desirable.

4.3 Effectiveness of the Approximation
To validate the proposed approximate query processing

algorithm, called ApTCD, this section reports its performance
and approximation quality for varying approximation set-
tings, compared to InTCD.

Figure 10 shows the performance and quality of our ap-
proximation algorithm for varying approximation settings.
We varied the aggregation window size ω from 1 to 5, the
dimensionality D of the index from 12 to 32, and k was set
to 20.
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Figure 10: Performance and quality of ApTCD for
varying settings, OSP3 dataset, k = 20.

In Figure 10(a), it is clear that the lower dimensional
indexes perform better than higher ones in general. Fig-
ure 10(b) reports the approximation accuracy, measured us-
ing the balanced F -scores (F1 scores) [25]:

F1 score =
2 · Precision · Recall

Precision + Recall
,

Precision =
|T̃ Ck ∩ T Ck|

|T̃ Ck|
, Recall =

|T̃ Ck ∩ T Ck|

|T Ck|
,

where T Ck and T̃ Ck denote the query result sets using InTCD

and ApTCD, respectively. Note that |T Ck| and |T̃ Ck| are not
always equal to k, because they may have ties.

Observe from the figure that our proposed reduction us-
ing PAA enables a high speed-up without compromising the
accuracy much when D = 12 and ω = 2 or 3.

We now compare ApTCD with InTCD using the following
two settings. First, we chose the setting where ApTCD is
most accurate, i.e., D = 32 and ω = 1. Second, we chose
a moderate setting, where D = 24 and ω = 2. By using
these two settings, accurate and moderate, we compared our
approximation scheme with the exact querying algorithm
proposed, InTCD.
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Figure 11: Approximation performance using OSP

Figure 11 and Table 3 respectively summarizes the perfor-
mances and accuracies of our approximation scheme using
the above two settings. In Figure 11, our approximation
scheme in both settings significantly outperformed InTCD,
and the gap increased as the size of the dataset increases.
For OSP3 dataset, our approximation is 28 and 19 times
faster than InTCD for moderate and accurate respectively.
Meanwhile, the accuracy was not compromised much, as
the precision and recall results in the accurate setting show,
e.g., constantly higher than 0.7.

Table 3: Approximation quality using OSP datasets

|V|
k

Accurate Moderate
(millions) Precision Recall Precision Recall

0.613 20 0.728 0.723 0.586 0.581
0.784 0.746 0.761 0.577 0.575
1.073 0.761 0.764 0.599 0.591
1.697 0.713 0.741 0.609 0.609
1.697 10 0.725 0.713 0.633 0.637

20 0.713 0.741 0.609 0.609
40 0.725 0.730 0.586 0.588
60 0.710 0.730 0.575 0.593
80 0.720 0.733 0.578 0.580

4.4 Comparison with LSH
Lastly, we evaluate the proposed indexing structure used

in InTCD, compared to the LSH implementation used by
Deckard (Figure 12).

Experiment Setting : For the given R-range query, our
R∗tree based index returns the exact answers, while LSH
returns approximate results with probability guarantee P .
More precisely, LSH requires two parameters P and R for
building the index. For the given query point q, LSH re-
turns all points p such that ‖p, q‖ ≤ R with probability of
P or higher. Due to this nature, technically, LSH structure
needs to be re-built as R changes, to ensure the probabilistic
guarantee, unlike our R∗tree based approach building one
single structure and reusing for arbitrary range R.

To accommodate such difference, we use a favorable set-
ting for LSH, of not considering the rebuilding cost of LSH,
to show our approach outperforms even in such unfair set-
ting in Figure 12(a). For queries, we randomly selected 100
vectors from OSP7, and varied R from 1 to 8.

Querying Time: Observe from Figure 12(a) that, even in
unfavorable settings, our index outperforms LSH in terms
of query execution time. This experiment also shows that,
as R increases, the performance gap also increases, which
suggests our approach is more scalable for large R. For
example, when R = 4 (which means selecting all data points
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Figure 12: Range query performance (log-scaled),
OSP7 dataset (|V|=784K).

with in L2 distance 4 from the query), our index is about
24 times faster than LSH (with P = 0.9), and when R = 6,
ours is 49 times faster than LSH.

Memory Use: Meanwhile, in Figure 12(a), some data points
for LSH are missing, which are the cases when LSH could
not return results due to memory shortage.

Alternatively, we can use a disk-based implementation of
LSH, not to be constrained by memory size. However, its
performance will be worse than that of memory-based im-
plementation reported in the figure, which is already out-
performed by our approach. Deckard goes around this
problem, by dividing a problem into sub-problems and ap-
ply LSH for each sub-problem.

Accuracy : In terms of accuracy, we compare the precision
and recall of our approach and LSH. In Figure 12(b), as the
precision of LSH was perfect in all settings, we only report
its recall when P = 0.95 and 0.90 respectively. Observe
that, as R increases, e.g., R = 4 or 6 in the figure, LSH
is more likely to miss some vectors within the range R. In
clear contrast, our indexing scheme guarantees the perfect
precision and recall in all cases.

Summing up, for instant clone search, our R∗tree based
indexing is more suitable than LSH, by ensuring (1) higher
performance, (2) effective memory usage, and (3) perfect
accuracy.

5. RELATED WORK
This section surveys existing research on (1) code clone

detection, (2) code example recommendation, and (3) code
search.

Clone Detection : As already briefly surveyed in Section 2,
there have been many clone detection techniques proposed
that abstract codes as parsing trees and apply hashing [2] or
characteristic vector comparison [11] for clone detection. In
a similar way, Wahler et al. [29] abstracted codes as XML
trees and adopted the concept of frequent itemsets to find
clones that share frequent tree patterns. Recently, a dis-
tributed code clone analysis algorithm, called D-CCFinder [24]
was proposed, which improves the scalability of CCFinder [15]
by leveraging multi-cluster machines. However, these tools
are still not scalable enough to achieve online detection in
large-scale repositories.

Code Recommendation : Meanwhile, there have been al-
ternative lines of research taking place, to find code exam-
ples that share (1) similar usage patterns or (2) structural
similarity.

In the first line of work, Xie et al. [30] proposed an ap-



proach to abstract codes as API call sequences and identify
examples that share similar sequences. Li et al. [22] used the
frequency of operation calls to define similarity, and then
clustered similar examples into a few representative usage
types. In the second line of work, Holmes et al. [9, 10] pro-
posed some heuristic structural matching techniques to find
relevant example codes. However, the former line of work
[30, 22] cannot be used for structural similarity search and
the latter [9, 10] has limited scalability.

Code Search Engine: There are commercial code search
engines, including Koders and Google Code Search that ab-
stract codes as text and support simple and regular expres-
sion keyword matches. However, these engines, which treat
codes as simple text, do not support structural matches.
Sourcerer [1] stores some structural information on codes in
relational tables and provides ranked matching, but does not
focus on optimizing search performance.

6. CONCLUSION
In this paper, we introduced scalable and instant code

clone search techniques. These techniques open doors to
many interesting unexplored applications, such as interleav-
ing clone detection with editing sessions during code devel-
opment.

We evaluated the accuracy and efficiency of our approach
with large-scale real-life software repositories. In addition to
exact code clone search, we also developed an approximation
algorithm for scenarios where some accuracy compromise
can be tolerated, which performs nearly a thousand times
faster than the baseline approach. Both the exact and ap-
proximation algorithms achieved sub-second response times
for large-scale real-life repositories of 1.7 million code seg-
ments.

As future work, we are considering the following:

. More features: In addition to the characteristic vectors,
we will consider more features such as the structural rela-
tionship between vectors or runtime semantics, to enable
more precise matching.

. Industry-scale detection: To build commercial engines,
e.g., to achieve Google’s scalability over billions of doc-
uments, we need to deal with unexplored issues such as
parallelization.
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