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ABSTRACT
Recently, many automatic test generation techniques have been pro-
posed, such as Randoop, Pex and jCUTE. However, usually test
coverage of these techniques has been around 50-60% only, due to
several challenges, such as 1) the object mutation problem, where
test generators cannot create and/or modify test inputs to desired
object states; and 2) the constraint solving problem, where test gen-
erators fail to solve path conditions to cover certain branches. By
analyzing branches not covered by state-of-the-art techniques, we
noticed that these challenges might not be so difficult for humans.

To verify this hypothesis, we propose a Puzzle-based Automatic
Testing environment (PAT) which decomposes object mutation and
complex constraint solving problems into small puzzles for humans
to solve. We generated PAT puzzles for two open source projects
and asked different groups of people to solve these puzzles. It was
shown that they could be effectively solved by humans: 231 out
of 400 puzzles were solved by humans at an average speed of one
minute per puzzle. The 231 puzzle solutions helped cover 534 and
308 additional branches (7.0% and 5.8% coverage improvement) in
the two open source projects, on top of the saturated branch cover-
ages achieved by the two state-of-the-art test generation techniques.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools

General Terms: Human Factors, Reliability

Keywords: Testing, Human Computation, Code Coverage

1. INTRODUCTION
Software testing is a difficult but important part of the software

development process. However, manual test case writing is labor
intensive. Though many automatic test generation techniques [4,
10, 15, 16, 19, 20, 22, 23, 26–29, 34] have been proposed, their cov-
erage needs to be improved. For example, our evaluation study
shows that only 61.6% and 53.0% of the total branches of the two
subjects were covered by test cases generated by a state-of-the-art
approach [22]. Other approaches based on dynamic symbolic exe-
cution (DSE) like Pex [29] and jCUTE [26] yield similar coverage
results when applied to complex real world programs [33].
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The low test coverages are largely due to challenges of gener-
ating test inputs, especially when the approaches are applied to
object-oriented programs. The major challenges include 1) insuffi-
cient objects, 2) complex constraint solving and 3) object mutation.

First, to construct test cases for object-oriented programs, ob-
jects need to be instantiated. However, the process of instantiating
a valid object is often not straightforward. This issue is partially
addressed by [19] and [28], which capture objects from program
executions or code repositories, and reuse them as test inputs.

Second, it is necessary to solve path conditions [29] to create
and/or modify test inputs to cover paths. To solve path condi-
tions automatically, various Satisfiability Modulo Theories (SMT)
solvers such as Yices [13] and Z3 [9] have been proposed. Howev-
er these solvers often yield limited results when used to solve cer-
tain forms of path conditions such as floating point, non-constant
bit-vector and non-linear modulo arithmetic [13]. As shown in Fig-
ures 1(a) and (b), a state-of-the-art SMT solver, Yices, cannot solve
these path conditions.

Path condition :
(foo .x << n ) < foo .y ( 1 )
n > 2 ( 2 )

(a) A simplified non-constant bit-vector example taken from
apache-commons-math 3.2.1 at MultiKeyMap.java:555

Path condition :
(foo .x % bar .y ) >= n ( 1 )

(b) A simplified non-linear modulo example taken from
apache-commons-math 3.2.1 at ExtendedProperties.java:1447

Figure 1: Path conditions unsolvable by a state-of-the-art SMT
solver, Yices.

A path condition solution (model ) :
specialContainer .size ( ) == 10 ( 1 )

Figure 2: An example of object mutation challenge

Third, even when valid objects are instantiated and solutions to
path conditions (i.e. models) are obtained, objects still need to be
mutated according to the models before using them as test inputs.
For example, if we have instantiated a valid specialContainer

object and have obtained a model as shown in Figure 2 for a path
condition, satisfying the model is still hard since automatically fig-
uring out ways to increase the size() of this specialContainer
can be non-trivial. Satisfying a model even as simple as this, by mu-
tating objects, may require extensive and sophisticated static and/or
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dynamic analysis. For example, in [19], the authors have applied
various static analysis techniques to automatically mutate objects
based on solution models, but the result was limited. In [33], the
authors identified the object mutation challenge as the most sig-
nificant cause of the low test coverage of the state-of-the-art test
generation technique, Pex.

However, the constraint solving and object mutation challenges
presented in Figures 1 and 2 might not be so hard for humans, since
we are very good at finding logic and rules quickly. For example,
humans can quickly figure out solution: (foo.x == 1, foo.y ==

9, n == 3) for Figure 1(a) and solution (foo.x == 3, bar.y ==

2, n == 1) for Figure 1(b). Based on this observation, we pro-
pose a Puzzle-based Automatic Testing environment, PAT, which
decomposes constraint solving and object mutation problems into
small puzzles that humans can solve.

We evaluated PAT by generating puzzles for two open source
projects and asking humans to solve these puzzles. Our evaluation
results showed that humans voluntarily played the presented puz-
zles and could solve them quickly and effectively: 231 of the 400
presented puzzles were solved by humans, and each puzzle was
solved in less then one minute on average. These puzzle solutions
improved coverage by 7.0% and 5.8% in two open source projects
on top of the very saturated test coverages achieved by state-of-the-
art automatic test generators, which is non-trivial.

We compared the effort of writing test cases without PAT and
found that solving PAT puzzles is more efficient than writing test
cases manually. In addition, solving PAT puzzles does not require
any programming skills or domain knowledge of the subjects. In
our evaluation, none of the participants had domain knowledge but
they improved test coverage significantly by solving PAT puzzles.

This paper makes the following contributions:
A novel puzzle-based testing environment that generates use-

ful test cases through puzzle solving by humans.
An implementation of the proposed approach: PAT.
An experimental study to evaluate PAT.

The rest of the paper is organized as follows. Section 2 surveys
related work. Section 3 presents a motivating example. Section 4
presents the detailed design of PAT. Section 5 presents evaluation
results. Section 6 discusses threats to validity. Finally, Section 7
concludes.

2. RELATED WORK

2.1 Automatic Test Generation
Many automatic test generation techniques have been proposed,

such as Randoop [22], which is based on random approach to gen-
erate test inputs. Michael et al. [20] proposed another random test
generation technique based on genetic algorithm. [4, 10, 16] gener-
ates test inputs by symbolic executions. PAT is designed to work as
complementary to all these automatic test generation techniques to
achieve higher test adequacy.

Dynamic symbolic execution (DSE) such as [15,23,29,34] gen-
erates test inputs by solving path conditions captured along dy-
namic execution paths. This technique combines concrete execu-
tion with symbolic execution [26, 27] to achieve high test cover-
age. However, complex constraint solving and object mutation for
object-oriented programs have always been challenging. Xiao et
al. [33] reported that complex constraints which cannot be solved
by SMT solvers and the object mutation challenge account for n-
early 68% of branches not covered by Pex, a DSE framework for
C#. Erete et al. [14] also demonstrated limitations of SMT solvers
in constraint solving.

Pasareanu et al. [25] tried to enhance classical symbolic execu-
tion techniques by partially addressing the complex constraint solv-
ing challenge. Their approach splits complete path conditions into
simple and complex subsets. Information from the simple subset of
the path conditions and concrete executions are leveraged to sim-
plify the solution of the complete path conditions. However, their
approach has limitations since information from the simple path
conditions is not always adequate to decide the satisfiability of the
complete path conditions [25]. PAT can complement this approach
by leveraging humans to solve the complex constraints (for SMT
solvers, but may be easy for humans) even when the simple path
condition information is inadequate.

Thummalapenta et al. [28] proposed MSeqGen which mines ex-
isting code bases to extract call sequences that can create objects
and mutate them. This approach relies on existing code bases and
may not find all necessary call sequences. PAT complements it by
transforming object mutation into puzzle solving and leverages hu-
mans to help mutate the objects.

PAT is a novel framework for decomposing complex constraint
solving and object mutation challenges and presenting them as sim-
ple puzzles to humans. Through solving puzzles generated by PAT,
humans can help address the challenges in automatic testing.

2.2 Human Computation
Human computation has been an emerging area in computer sci-

ence [6]. Several projects have been put on the Internet and are
open to the general public, such as Foldit [6], reCAPTCHA1, the
ESP game [31] and Pex4Fun [30]. The main idea of human com-
putation is that: though humans compute at a much slower pace
than ordinary computers, they are capable of solving many things
that computers cannot. For instance, the reCAPTCHA project digi-
tizes books with help from millions of online users typing captchas
everyday. The underlying idea of this project is that humans can
easily recognize words more precisely than computers. So with the
help of human resources available on the Internet, millions of words
not recognized by computers can be easily digitized. Most recently,
human computation has received attention in the software engineer-
ing area also. Dietl et. al [11] designed verification games which
can be used to verify program properties with the help of human
players. PAT is inspired by these human computation projects. We
also believe that humans, even without much domain knowledge of
testing subjects, can help software testing by solving simple object
mutation and constraint solving puzzles.

3. MOTIVATING EXAMPLE
Figure 3 presents a motivating example taken from Apache Com-

mons Math 2.1 which demonstrates the two major challenges in
automatic test generation techniques.

In this code snippet, the VectorialCovariance.getResult()
method creates an object of type RealMatrix by calling a static
method MatrixUtils.createRealMatrix() (Line 86 (a)). The
MatrixUtils.createRealMatrix() method then calls the con-
structor of either Array2DRowRealMatrix or BlockRealMatrix
(Line 62 (b)). If the Array2DRowRealMatrix constructor is called,
it further invokes its parent constructor AbstractRealMatrix, il-
lustrated in Figure 3(c). After creation of the RealMatrix objec-
t, the getResult() method proceeds to a conditional statement,
where the execution flows to different branches according to the
value of member field n (Line 88 (a)). Suppose the branch at Fig-
ure 3(a) line 89 has never been covered by existing test cases, and
we want to generate new test cases to cover this branch.

1http://www.google.com/recaptcha/
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public RealMatrix getResult ( ) {
84
85 int dimension = sums .length ;
86 RealMatrix result =

MatrixUtils .createRealMatrix (dimension , dimension ) ;
87
88 if (n > 1) {
89 double c = . . . /∗ target branch to cover ∗ /

. . .
98 }
99
100 return result ;
}

(a) VectorialCovariance.getResult()

public static RealMatrix createRealMatrix (final int rows ,
final int columns ) {

61 return (rows ∗ columns <= 4096) ?
62 new Array2DRowRealMatrix (rows , columns ) :

new BlockRealMatrix (rows , columns ) ;
}

(b) MatrixUtils.createRealMatrix(int, int)

protected AbstractRealMatrix (final int rowDimension ,
final int columnDimension )

55 throws IllegalArgumentException {
56 if (rowDimension <= 0 ) {
57 throw MathRuntimeException . . .
60 }
61 if (columnDimension <= 0) {
62 throw MathRuntimeException . . .
65 }
66 lu = null ;
}

(c) AbstractRealMatrix.AbstractRealMatrix(int, int)

Figure 3: A motivating example from Apache Commons Math

3.1 Object Mutation Challenge
The first challenge of covering this branch is object mutation [33].

Given a model satisfying some path conditions, generating/mutat-
ing an object to the desired object state without breaking class in-
variants [2] is challenging [33]. Without the necessary test inputs
in the correct object states, the target branch may not be covered.

The object mutation challenge surfaces when the model for cov-
ering the target branch requires non-publicly accessible fields to
have certain values or external library calls to return certain values.

A model :
this == instanceof VectorialCovariance ( 1 )
this .sums == instanceof double [ ] ( 2 )
this .sums .length == 1 ( 3 )
this .n == 2 ( 4 )

Figure 4: A model satisfying the path condition in Figure 5

For example, Figure 4 is a model satisfying the path condition in
Figure 5 for the target branch (Figure 3(a) line 89). In this mod-
el, line (3) requires that a VectorialCovariance object’s private
field sums have a length of 1. Similarly, line (4) requires that the
private field n should have a value of 2. Since both fields are pri-
vate, and no direct setters are defined in the class for changing their
values, mutating VectorialCovariance to satisfy the model is
a non-trivial task. For this challenge, human computation might
be helpful in that by observing the effects of executing member
methods or even just observing the method names, humans may
recognize and generalize rules about the effects of these methods.

The generalized rules can help mutate an object to satisfy a given
model.

3.2 Constraint Solving Challenge
In typical dynamic symbolic execution approaches, path condi-

tions need to be retrieved along different program execution paths.
For instance, along the path (getResult():85, 86, create-

RealMatrix(): 61, 62, AbstractRealMatrix():56, 60,

61, 65, 66, getResult(): 87, 88, 89) in Figure 3, a path
condition is retrieved (Figure 5).

Path condition :
this == notnull ( 1 )
this .sums == notnull ( 2 )
this .sums .length ∗ this .sums .length <= 4096 ( 3 )
this .sums .length > 0 ( 4 )
this .n > 1 ( 5 )

Figure 5: Path condition along an execution path

However, when the approaches try to compute models for cer-
tain types of path conditions, such as those containing non-linear
or floating point arithmetics, SMT solvers may return an error. For
example, a state-of-the-art SMT solver, Yices [13], fails to com-
pute a model for the path condition in Figure 5, with an error mes-
sage: “Error: feature not supported: non linear problem.” due
to constraint (3). Even though there might be other SMT solvers
which provide stronger support, many theories such as non-linear
arithmetics are undecidable. In addition, some weaknesses in SMT
solvers are demonstrated by [14]. Without a necessary model satis-
fying the path conditions, these automatic test generation approach-
es would not be able to create the necessary test inputs to cover the
corresponding target branch. For this challenge, human computa-
tion can be helpful since some of these arithmetics might not be too
difficult for humans.

Based on these observations, we propose PAT, a framework which
tries to leverage human intelligence to help address the two chal-
lenges to improve test adequacy.

4. DESIGN AND IMPLEMENTATION
This section presents the overall design and implementation of

PAT. In general, two types of puzzles are generated for the not cov-
ered branches. Puzzle solutions by humans are then used to gener-
ate test cases automatically.

Figure 6 presents the architectural design of PAT which consists
of five main phases: up-front testing runs, path computation, mu-
tation puzzle generation, constraint solving puzzle generation and
finally test case generation from puzzle solutions. 1) Initially, PAT
runs test cases generated by several state-of-the-art automatic test
generation techniques to obtain a code coverage report together
with various dynamic information. 2) Based on the coverage report,
PAT collects all branches not covered by the up-front testing runs.
Then, PAT tries to find program paths along with models which sat-
isfy the path conditions by a symbolic execution algorithm for each
of the not covered branches. 3) For branches which have feasible
paths along with models that satisfy the path conditions, but contain
difficult to mutate fields such as the one in Figure 4, PAT transforms
the mutation problems into object mutation puzzles. 4) For branch-
es for which PAT cannot find any feasible program paths to cover
in phase 2), due to the SMT solver’s limitations, PAT decomposes
the path conditions of the branches and transforms them into con-
straint solving puzzles. 5) Finally, puzzle solutions obtained from
humans are automatically analyzed and converted into executable
test cases. The following subsections describe each phase in detail.
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Figure 6: The architecture of PAT.

4.1 Up-front Testing Runs
In this phase, PAT runs test cases automatically generated from

various state-of-the-art automatic test generation techniques [19,
22]. There are two main purposes of the up-front testing runs. First,
all automatically coverable elements are covered. Up-front testing
runs phase makes sure that human efforts are not spent on elements
that can be effectively covered by automatic test generation tech-
niques. The second purpose is to collect dynamic information from
the executions, including object instances generated during execu-
tions and the method call sequences. A method call sequence is
the sequence in which methods call each other. Object instances
are captured through the object-capturing code inserted using the
ASM [5] library. The captured objects are saved and later restored
using the XStream [32] framework. The dynamic information is es-
sential to facilitate path computation and puzzle generation phases
of PAT.

After the up-front testing runs, PAT obtains a detailed coverage
report and identifies elements (e.g., branches) not covered by auto-
matic test generation techniques. These not covered elements be-
come targets of the later puzzle generation phases.

4.2 Path Computation
From the coverage report of the up-front testing runs, PAT iden-

tifies the set of not covered elements (i.e., branches). Our goal is to
construct test cases which can effectively cover these elements. To
achieve this goal, for each of the not covered branches, PAT looks
for feasible execution paths covering the branch together with the
corresponding path conditions.

Our approach can be viewed as an instance of the weakest pre-
condition [12] computation similar to [3, 21]. Our approach is
an inter-procedural, path-sensitive and context-sensitive backward
symbolic execution algorithm. PAT first transforms the subject pro-
gram from Java byte-code into static single assignment (SSA) [7]
representation using WALA [18]. It then performs the symbolic
execution from a target branch and runs backward to the entry of
the current method which the branch is in. If the current method is
public, the symbolic execution terminates. Otherwise, PAT finds a
caller method of the current method from the method call sequence
information collected during the up-front testing runs. The back-
ward symbolic execution continues from the call site of the caller
method to its entry. This process continues until it reaches a public
method’s entry or PAT cannot find any caller method anymore.

During the backward symbolic execution, PAT collects and prop-
agates a set of path conditions represented in a symbolic manner,
along the backward execution path. Thus, when the symbolic exe-
cution is completed, a set of path conditions representing the nec-
essary conditions to reach the target branch from a public method’s
entry is retrieved. PAT then tries to solve the set of path conditions
using an SMT solver, Yices [13]. If the set of path conditions is
satisfiable, a model is returned from the SMT solver. Otherwise,
the backward symbolic execution is restarted by backtracking to
an alternate backward path at the nearest program branching point.
The process of collecting feasible execution paths and the corre-
sponding path conditions for a branch is completed when PAT has

obtained a certain number (currently 10) of models corresponding
to different execution paths.

Termination handling However, when computing feasible path-
s of a branch, the above approach might run forever because of the
undecidability problem in software verification [1]. This problem
is generally caused by loops and recursive calls in the code. To
address this issue, two parameters are introduced that limit 1) the
maximum number of times a loop can be unrolled, and 2) the max-
imum invocation depth allowed. Hence, under the restrictions im-
posed by these two parameters, the path computation process for
each branch can enumerate every possible execution path within a
finite number of steps and guarantee termination. However, under
such approximations, the computation approach becomes neither
sound nor complete. In our experiment, we set the two parameters
to two and five.

We also impose two additional bounds to the path computation
phase to make sure it can terminate within a reasonable time: 1) the
maximum computation time for one path is limited to 600 seconds;
and 2) PAT is allowed to invoke the SMT solver for at most 1,000
times in the path computation phase for each branch.

4.3 Mutation Puzzles
For branches which have valid models satisfying the path con-

ditions, but do not have test inputs satisfying these models, PAT
generates object mutation puzzles from these models. As indicated
in Section 3, generating test inputs satisfying models automatically
might not be a trivial task in object-oriented programs since not all
fields are directly assignable. Therefore, we leverage human intel-
ligence to help address this challenge.

To satisfy a given model, we need to mutate one or several ob-
jects into certain object states. For instance, for the model in Fig-
ure 4, we need to mutate an VectorialCovariance object into
an object state where field n has a value of 2, and field sums has a
length of 1. If such fields are public, PAT can simply assign the cor-
responding values to them. However, if they are non-public, PAT
needs to figure out a sequence of method calls that can mutate an
object to this goal state. The objective of object mutation puzzles
is to obtain such a sequence with human help.

4.3.1 Generating Sub-models

Model :
in == notnull ( 1 )
in .readInt ( ) == 1 ( 2 )
this .currentState == null ( 3 )

(a) A complete model

Sub−Model 1 :
in == notnull ( 1 )
in .readInt ( ) == 1 ( 2 )

Sub−Model 2 :
this .currentState == null ( 1 )

(b) The divided sub-models

Figure 7: Sub-model division

Instead of presenting an entire model directly, PAT divides a
model into several sub-models to make the generated puzzles as
simple as possible. A sub-model represents the goal state of only
one object reference, such as the callee or a parameter. Figure 7
illustrates one such division. The complete model in Figure 7(a) is
divided into two sub-models in Figure 7(b) to represent goal states
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Figure 8: Screenshot of mutation puzzles. Panel 1 is the Object State panel showing the goal and the current object state. Panel 2 is
the Object panel showing the current mutating object. Panel 3 is the Action List panel that lists available actions with parameters.

of in and this separately. The solution of the complete model can
be retrieved by combining solutions of all individual sub-models.
The retrieved solution is correct as long as the solutions to the indi-
vidual sub-models are independent of each other. This means that
the solution to one sub-model should not affect solutions to any
other sub-models.

4.3.2 Prioritizing Sub-models
Before generating puzzles, PAT first prioritizes all sub-models to

make better use of human efforts. The key insight for prioritizing
sub-models is that, one sub-model can be shared by many differ-
ent models. For example, sub-model 2 in Figure 9 is identical to
sub-model 2 in Figure 7(b). Sub-models shared by many different
models are assigned higher priorities.

Sub−Model 1 :
in == null ( 1 )

Sub−Model 2 :
this .currentState == null ( 1 )

Figure 9: Another set of Sub-models

4.3.3 Generating Puzzles for Sub-models
After prioritizing the sub-models, object mutation puzzles are

generated for them. Puzzles generated from sub-models with high-
er priorities are presented earlier. Figure 8 presents the interface of
an object mutation puzzle generated from a sub-model. When de-
signing the puzzle interface, we want to make it as simple to play as
possible, such that humans can learn to play it within a few minutes.
On the puzzle interface, there are three different panels, namely, 1)
the Object State panel, 2) the Object panel, and 3) the Action List
panel. The Object State panel comprises two sections. The upper
section shows the goal object state that should be satisfied in the
puzzle. The bottom section shows the current object state. The Ob-
ject panel shows the object currently being mutated. Users can also
save any intermediate object instances in the Object Cache section
of this panel. Finally, the Action List panel lists all public member
methods (actions) in button style. Thus, users can invoke different
member methods by pressing the corresponding buttons.

Initially, PAT tries to instantiate a set of objects of the type spec-
ified by the sub-model. There are two different ways by which PAT
can instantiate objects: 1) load from the set of previously saved ob-
jects, or 2) find and invoke the constructor that takes no parameter.
If both fail, PAT tries to instantiate objects of the sub-classes until
a set of objects is instantiated or there are no more sub-classes to
try. If a set of objects is successfully instantiated, a random object
in the set is used as the current object. Users can easily change the
current object by pressing the “Next Object” button.

To perform an action, users can press any action button from the
Action List panel. Parameters are assigned in the following man-
ner: if it is a primitive type parameter, users can simply type in
the primitive value such as 1, 0.5 or true; if it is not a primitive
type parameter, users can press the “Load Object” button to instan-
tiate an object of the corresponding type and use it as the input
parameter. The mechanism of instantiating a parameter object is
the same as the mechanism of instantiating a current object for a
mutation puzzle, as previously described. If no object is loaded, a
null value is used. After filling in all parameters, users can press
the “Execute” button to execute the action.

After an action is executed, PAT immediately re-evaluates the
satisfaction of each model line in the Object State panel. Once a
model line has been satisfied by the current object state, PAT turns
its color to green in the Current State section. The puzzle is consid-
ered solved if all model lines of the sub-model have turned green,
and the solution is automatically saved into the server database.
The solution of a puzzle consists of all previously executed actions
(i.e. method calls) along with the input parameters.

4.3.4 Providing Hints
Since there can be many available actions in the Action List pan-

el, we want to further simplify the solution of puzzles by recom-
mending a set of potential actions to humans. PAT conducts a stat-
ic analysis to identify all actions containing statements which can
change the value of at least one field in the sub-model. All such
actions are recommended to users by highlighting them in yellow.
Figure 10 demonstrates the simplified pseudo-code for finding rec-
ommended actions in a target class.

For each method in the target class, we analyze each of the in-
structions in the method. If the current instruction is an assignment
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Input the target class of the mutation puzzle.

Input the target fields which we want to change.

Conduct points-to analysis and build call graphs.

for each method in the target class:

for each instruction in the method:

if it is an assignment instruction:

if the assignee is one of the target fields:

Mark current method as recommend.
break

if it is an invocation instruction:

if callee has not been analyzed before:

Recursively analyze if callee is recommend.
if the callee method is recommend:

Mark current method as recommend.
break

Output all methods marked as recommend.

Figure 10: Pseudo-code for finding recommending methods

instruction which assigns values to one of the fields appearing in the
sub-model, we mark the current method as recommend. If the cur-
rent instruction is an invocation instruction, and the callee method
has not been analyzed before, PAT recursively analyzes the callee
method of this invocation. The current method is marked as recom-
mend if the callee method has been marked recommend. We limit
the maximum recursion level of the analysis to 10 to avoid infinite
recursion in the presence of cyclic calls. Global lists of recommend
and analyzed methods are maintained during the process to avoid
redundant analysis.

In Figure 8, actions VectorialCovariance(int, boolean),
clear() and increment(double[]) are highlighted because they
can change either this.n or this.sums or both.

4.3.5 Solving the Puzzles
A typical scenario to solve the puzzle presented in Figure 8 is

as follows. A player observes the list of available actions. Judging
from the action names, argument types, as well as the highlighted
hints, the user should be able to infer a group of candidate action-
s quite easily. After a few attempts on the candidate actions, the
player may soon find out that model line (4) can be satisfied by in-
voking action VectorialCovariance(int, boolean) with 1
as the first parameter value. Similarly, invoking the highlighted ac-
tion increment(double[])with a double array increases this.n
from 0 to 1 (this field has already been reset to 0 in the first action).
Thus, model line (3) can be satisfied by invoking this action twice.
In this way, the presented sub-model is satisfied, and all actions are
recorded automatically.

4.4 Constraint Solving Puzzles
In case of branches for which PAT cannot find any feasible paths

to cover in the path computation phase, PAT goes on to examine
whether the computation failures are due to SMT solver limitations.
As indicated in Section 3, even though some particular forms of
path conditions, such as those containing non-linear arithmetic, are
not solvable by the SMT solver, it does not necessarily mean that
they are naturally difficult for humans. When such path conditions
are found, PAT extracts the not solvable constraints from these path
conditions, decomposes them, and presents them to humans in the
form of constraint solving puzzles.

4.4.1 Extracting Error Related Constraints
Given a target branch, if PAT is not able to obtain any feasible

execution path with path condition, it examines all path conditions
which have been input into the SMT solver for satisfiability checks.
Usually, if a path condition cannot be handled by the SMT solver,
the solver outputs an error message indicating the cause of the error,
as shown in Figure 11.

Path conditions :
this == notnull ( 1 )
this .sums == notnull ( 2 )
this .sums .length ∗ this .sums .length <= 4096 ( 3 )
this .sums .length > 0 ( 4 )
this .n > 1 ( 5 )
Error : feature not supported : non−linear problem .

Figure 11: An example of error-causing path conditions

Once PAT has found path conditions which cause SMT errors, it
saves them for future puzzle generations. Since PAT performs SMT
checks along many different paths for a given branch, there can be
many different path conditions that cause errors. Currently, PAT
saves only the first 10 erroneous path conditions it finds for one
branch. Saving more path conditions for puzzle generations can
increase the probability of finding a satisfiable model but it also
requires more humans to solve them.

For the saved path conditions, it might still be too long to present
them directly. By observing the path conditions in Figure 11, we
notice that constraints (1), (2) and (5) are independent of the error
related constraints (i.e., (3) and (4)). Therefore, PAT performs an
additional SMT check to obtain a partial model which satisfies all
the non-error related constraints (Figure 12(a)). Thus, only the er-
ror related constraints are left for puzzle generation (Figure 12(b)).
Note that even though constraint (4) in Figure 11 is not an error-
causing constraint, it is related to the error-causing constraint (i.e.,
(3)) in that they are both constraining the same variable. Therefore,
we still regard it as an error related constraint.

A partial model :
this == instanceof VectorialCovariance ( 1 )
this .sums == instanceof double [ ] ( 2 )
this .n == 2 ( 3 )

(a) A partial model satisfying the non-error related constraints

Error related constraints :
this .sums .length ∗ this .sums .length <= 4096 ( 1 )
this .sums .length > 0 ( 2 )

(b) Error related constraints left for puzzle generation

Figure 12: Extracted error related constraints

The partial model in Figure 12(a) and a model obtained from
public puzzle solving can be joined together to form a complete
model, such as the one in Figure 4.

4.4.2 Prioritizing Constraint Sets
Before generating constraint solving puzzles, PAT groups and

prioritizes the error-related constraint sets first. The key idea of
the grouping schema is that even though many constraint sets are
literally different, some are actually semantically equivalent. For
example, even though both constraint sets in Figure 13 are extracted
from different path conditions, and they are literally different, it is
easy to notice that these constraint sets are actually semantically
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equivalent. By solving only one of them, PAT can retrieve models
for both constraint sets. Hence, PAT identifies all constraint sets
which are different only by their corresponding variable names as
semantically equivalent. These constraint sets are put into the same
group, and PAT generates only one representative puzzle from a
random constraint set in this equivalent group.

Error related constraint set 1 :
this .sums .length ∗ this .sums .length <= 4096 ( 1 )
this .sums .length > 0 ( 2 )

(a) Error related constraint set

Error related constraint set 2 :
this .covarianceImpl .sums .length ∗

this .covarianceImpl .sums .length <= 4096 ( 1 )
this .covarianceImpl .sums .length > 0 ( 2 )

(b) Error related constraint set

Figure 13: Two semantically equivalent error related con-
straint sets

Then, PAT prioritizes the groups of constraint sets to make the
best use of human efforts. Since solving each error-related con-
straint set may lead to the solutions of multiple models for different
branches, the goal of the prioritization schema is to maximize the
number of additional branches potentially coverable by the models.

To achieve this, PAT dynamically computes the potential gain of
branch coverage for each constraint set group and selects the one
with the highest potential gain to present first. If there are multiple
groups with the same highest potential gain, PAT selects the one
with the fewest number of constraints.

4.4.3 Generating Puzzles for Constraint Solving

Figure 14: Screenshot of constraint solving puzzles. Panel 1
presents the constraints being solved in the puzzle. Panel 2 is
the input area where users assign concrete values to variables.

After the error related constraint sets are grouped and prioritized,
they are presented as constraint solving puzzles by PAT. Figure 14
is a screenshot of the PAT constraint solving puzzle. Two different
panels are constructed, with the left panel presenting the constraint
set required to be satisfied and the right panel providing areas for
humans to input concrete values. Whenever a value is changed
by the user, PAT immediately re-evaluates the satisfaction of each
constraint line. Constraint lines satisfied by the current set of con-
crete values are highlighted in green. A puzzle is considered solved
when all constraint lines have turned green.

Since each puzzle is actually a representation of a group of con-
straint sets that might be constraining different variables, all vari-
able names in the constraint lines are masked with symbols (i.e.
{A}, {B}, etc.).

4.5 Constructing Test Cases from Solutions
The last phase of PAT is to generate test cases at the server side

from puzzle solutions.
Solutions of constraint solving puzzles can be directly used as

primitive type arguments or they can be assigned to publicly acces-
sible fields based on the solved models. In case the related fields are
not directly assignable, these solutions can be used as new models
to generate additional object mutation puzzles.

For object mutation puzzles, the complete action sequence taken
by a player to solve a puzzle is directly translated into a correspond-
ing method call sequence. The method call sequence can generate
test inputs satisfying a target model. For example, Figure 15 shows
the method call sequence generated from the action sequence de-
scribed in Section 4.3.5. The generated method call sequence pro-
duces a VectorialCovariance object satisfying the target model
in Figure 4. It is possible that a player can perform some trial ac-
tions during puzzle solving which are not relevant to the solution.
In such case, the resulting method call sequence can contain meth-
ods whose side-effects do not contribute to the test input generation.
However, since the test inputs generated by the whole method call
sequence can still satisfy the target model, these irrelevant method
calls do not affect the test case generation process.

To construct the final test case for the model, PAT invokes the
target method which includes the target branch, with test inputs
generated by the method call sequences.

VectorialCovariance var0 =
new VectorialCovariance ( 1 , true ) ;

double [ ] var1 = (double [ ] ) ObjLoader .loadObjectFromFile (
" /bigstore /pat /Captured /double [ ] / hash_10032989 " ) ;

var0 .increment (var1 ) ;
double [ ] var2 = (double [ ] ) ObjLoader .loadObjectFromFile (

" /bigstore /pat /Captured /double [ ] / hash_10032989 " ) ;
var0 .increment (var2 ) ;

Figure 15: An example of generated method call sequence

5. EVALUATION

5.1 Evaluation Setup
In this section, we investigate the usefulness of PAT by address-

ing the following research questions:
RQ1 How many object mutation puzzles and constraint solving

puzzles can be solved by humans?
RQ2 How many people would play PAT voluntarily?
RQ3 How much is the test coverage improved by the puzzle solu-

tions of PAT?
RQ4 How much manual test case writing effort can be saved with

the help of PAT?

5.1.1 Subjects
For evaluation, we deployed the PAT framework to the Apache

Commons Math (ACM)1 library version 2.1 and the Apache Com-
mons Collections (ACC)2 library version 3.2.1.

Table 1: Subjects: ACM and ACC
Name Version # of Lines # of Branches

Commons Math 2.1 20,605 7707
Commons Collections 3.2.1 14,261 5242

ACM is a lightweight, self-contained, mathematics and statis-
tics library. ACC is a data container library which provides more
1http://commons.apache.org/math/
2http://commons.apache.org/collections/

146



0 1000 2000 3000 4000 5000 6000

0
20

00
40

00
60

00

Time Spent (second)

B
ra

nc
he

s 
C

ov
er

ed

Figure 16: The Randoop coverage result for ACM

data structures over JDK. Both subjects are popular medium size
libraries, and have been commonly used in software engineering
literature [8, 17, 24].

5.1.2 Up-Front Testing Runs And Baseline Techniques
Before PAT actually generates puzzles for the subjects, a set of

automatically generated up-front test cases needs to be executed,
as described in Section 4.1. This phase removes branches easily
coverable by automatic test generation techniques. Thus, PAT gen-
erates puzzles only for branches not coverable by automatic test
generation techniques.

In the evaluation we generated the up-front test cases with two
types of automatic test generation techniques. These two tech-
niques are also used as baseline techniques when we compare the
coverage improvements achieved by PAT in RQ3.

The first up-front testing technique we used was Randoop [22],
a state-of-the-art feedback directed random test generation tech-
nique. Figure 16 presents the coverage results of Randoop. The
X-axis in the figure represents the test case generation time (in sec-
onds) spent by the technique. For example, 1000 means the tech-
nique was set to generate test cases for 1,000 seconds. The Y-axis
represents the total number of branches covered by test cases gen-
erated by the technique. Figure 16 shows that the coverage is basi-
cally saturated after 4,000 seconds. Thus, we used 6,000 seconds
as the time setting for Randoop to generate the up-front test cases.

The second up-front testing technique we used was a symbol-
ic execution based automatic test generation technique (Symbolic).
We had adapted and implemented a simplified version of the sym-
bolic execution based test generation module. This module uses the
same path computation algorithm described in Section 4.2 to obtain
the path conditions for each branch not covered by Randoop. To
construct test inputs satisfying the path conditions, this symbolic
execution module attempts to mutate objects automatically without
breaking any class invariants [2]. More specifically, it assigns mod-
el values only to primitive type arguments and to member fields that
are publicly accessible. It is possible to assign values to non-public
fields through Java reflection but our symbolic module does not do
that since this may easily break class invariants and produce many
objects with invalid states.

In total, 64.4% of branches were covered with test cases gen-
erated by the two up-front testing techniques for ACM. For ACC,
56.7% of branches were covered with test cases generated by the
two techniques. In our study, we used these two up-front testing
techniques. However, besides these two techniques, other automat-
ic test generation techniques can also be deployed as the up-front
testing runs to generate PAT puzzles.

5.2 RQ1: Puzzle Solving Results
To investigate the effectiveness of humans in solving the puzzles,

we conducted one small scale study targeting the graduate comput-
er science (CS) students. We invited a group of eight graduate CS
students to play both kinds of puzzles to investigate how effective
they were in solving the puzzles. All participants were present-
ed with the top 100 object mutation puzzles prioritized by PAT as
described in Section 4.3.2 and top 100 constraint solving puzzles
prioritized as described in Section 4.4.2. For evaluation purpos-
es, all participants were presented with the same set of 100 object
mutation puzzles and 100 constraint solving puzzles. However, in
the actual deployment, PAT does not present already solved puzzles
again. Table 2 shows the overall puzzle solving results.

Table 2: Puzzle Solving Results for ACM
Puzzle Type Total Presented Total Solved Avg. Time

Mutation 100 51 1 min
Constraint 100 72 1 min

We investigated the effectiveness of participants in solving the
presented puzzles in two aspects: 1) how many puzzles can they
solve; and 2) how long does it take for them to solve the puzzles.
Note that since the lists of puzzles solved by participants can have
overlaps, redundantly solved puzzles are counted only once.

In total, 51 of the 100 object mutation puzzles were successfully
solved by our participants. On average, a participant spent one
minute on a puzzle, before solving it or moving to the next puzzle.

The evaluation results show that the participants were able to
handle the mutation puzzles quite effectively, with a 51% puzzle
solving rate and one minute time spent on each puzzle.

Table 2 presents the overall results for constraint solving puzzles.
In terms of puzzle solving, after removing the redundant ones, 72
of the 100 constraint solving puzzles were successfully solved by
our participants. On average, a participant spent one minute on a
puzzle, before solving it or moving to the next puzzle.

The evaluation results indicate that our group of participants can
also solve the constraint solving puzzles quite effectively, with a
72% puzzle solving rate and one minute time spent on each puzzle.

Overall, the group of participants (i.e. CS graduate students)
which we investigated could solve both types of puzzles effectively.

5.3 RQ2: Voluntary Participation
The next research question we want to investigate is: how many

people would play PAT voluntarily?
To investigate this question, we setup and deployed PAT on the

second subject, ACC, and generated puzzles for it. Then, we posted
the link to the puzzles on Twitter and encouraged people to partici-
pate on a voluntary basis. Our tweet was retweeted several times.

Table 3: Puzzle Solving Results for ACC
Puzzle Type Total Presented Total Solved Avg. Time

Mutation 100 24 1 min
Constraint 100 84 1 min

In total, 120 people volunteered to play the puzzles. Table 3
presents the overall results of puzzle solving by these participants.
Overall, 24 of the top 100 object mutation puzzles and 84 of the top
100 constraint solving puzzles were successfully solved. In terms
of time spent, on average, a participant spent one minute on both
kinds of puzzles before solving it or moving to the next puzzle.

Comparatively, the solving rate for object mutation puzzles was
lower, but the solving rate for constraint solving puzzles remained
high comparing to puzzle solving by CS graduate students (in RQ1).

To encourage more people to participate and play the PAT puz-
zles, we can further introduce a competition and reward mecha-
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Figure 17: Coverage improvements of ACM and ACC. The
numbers on the bar plots show the amount and percentage of
additional branches covered by each technique.

nism. For instance, humans can compete for coming up with the
first solution of a puzzle. Points or prizes can be awarded to them
as stimulation. Implementing such a mechanism can attract more
people to play the PAT puzzles, but it is more of an engineering
issue. A competition and reward mechanism will be introduced in
future versions of PAT.

5.4 RQ3: Coverage Improvement
We have shown that PAT puzzles can be effectively solved by

humans and people are willing to participate in solving puzzles.
The next research question we want to investigate is: how much can
these solved puzzles improve test coverage. For this question, we
generated test cases using the puzzle solutions from RQ1 and RQ2
for the two subjects, ACM and ACC. We investigated the coverage
improvements achieved by these PAT test cases and compared them
with the two baseline techniques, Randoop and Symbolic.

We first used the two baseline techniques in up-front testing runs
as shown in Section 5.1.2. Only constraints and mutations related
to the not-covered branches by these two baseline techniques were
presented to humans as puzzles (Sections 5.2, 5.3), since human
effort should not be wasted on branches coverable by automatic
techniques. We investigated how much PAT improves coverage, on
top of these two baseline techniques.

Figure 17 presents the numbers and percentages of branches cov-
ered by the baseline techniques and PAT for the two subjects. Ran-
doop represents the branch coverage of running test cases generated
by Randoop. Symbolic shows the additional coverage that can be
achieved with Symbolic. Finally, PAT is the number of additional
branches covered with test cases generated by PAT.

For ACM, Randoop achieved a coverage of 4750 (61.6%) branch-
es. As shown in Figure 16, coverage of this technique had reached
saturation after running for 4,000 seconds. Symbolic covered an
additional 217 (2.8%) branches on top of Randoop. Overall, the
two baseline techniques together achieved 64.4% branch coverage.

By running test cases generated from 123 puzzle solutions ob-
tained in RQ1, PAT improved the coverage of the two baseline tech-
niques by 534 (7.0%) branches. Considering the saturated coverage
of the two baseline techniques, and the relatively small scale of the
study (solving only 123 PAT puzzles), a 534 (7.0%) branch cov-
erage improvement is non-trivial. The coverage improvement was
achieved by humans without domain knowledge of the subjects.

Similarly for ACC, the two baseline techniques had achieved a
branch coverage of 56.7% together. On top of that, PAT improved
the coverage by 308 (5.8%) branches, leveraging only 108 puzzle
solutions.

Overall, after solving only 123 puzzles of ACM and 108 puzzles
of ACC, PAT successfully generated test cases to cover 534 (7.0%)
and 308 (5.8%) additional branches for the two subjects, on top of
the two saturated baseline techniques. This shows that PAT solu-
tions were efficient in generating test cases to cover more branches.
In addition, it shows that PAT’s prioritization approaches described
in Section 4.3.2 and Section 4.4.2 were effective, and participants’
efforts were well spent on the most important puzzles. On average,
each puzzle solution helped cover three to four branches, while one
puzzle took about one minute to solve, as shown in RQ1 and RQ2.

5.5 RQ4: Effort Reduced
We have shown that PAT puzzles can be solved by humans and

the puzzle solutions can improve test coverage significantly. Since
the puzzle solving process includes human effort, one could argue
that humans can directly write the test cases manually without play-
ing PAT puzzles.

To evaluate this, a graduate student randomly selected ten not
covered branches from each subject and tried to write test cases
manually to cover them. He had six years of Java programming ex-
perience, and certain degree of domain knowledge of the subjects.

Table 4: Manual effort (in Minutes) required to write test cases
for ten randomly selected branches in ACM and ACC

ACM Branch Time ACC Branch Time

1 PolynomialSplineFunction:147 4m AbstractHashedMap:624 22m
2 VectorialCovariance:93 6m AbstractMapBag:263 12m
3 MicrosphereInterpolatingFunction:220 13m BoundedBuffer:164 7m
4 FractionFormat:244 2m BoundedFifoBuffer:284 3m
5 StepNormalizer:152 17m InstantiateTransformer:62 4m
6 DirectSearchOptimizer:201 5m LazyList:117 4m
7 LeastSquaresConverter:180 9m ObjectGraphIterator:189 11m
8 LoessInterpolator:308 12m LinkedMap:171 5m
9 RotationOrder:802 4m Flat3Map:478 3m
10 AbstractRealMatrix:885 13m CompositeCollection:285 4m

Average 9m Average 8m

Table 4 shows the time in minutes spent on writing test cases for
ten randomly selected branches for each project. Mostly, it took 3
to 9 minutes to write a test case to cover one branch. Some branches
such as AbstractHashedMap:624 took more than 20 minutes as the
pre-condition for covering the branch was complex and involved
several different methods.

Overall, it took 8 minutes on average to manually write one test
case to cover a branch. These results indicate that manual test writ-
ing to cover even one branch requires significant time and effort.

However, PAT, with its prioritization approaches (Section 4.3.2
and Section 4.4.2), covered 534 branches for ACM and 308 for
ACC leveraging only 123 puzzle solutions from ACM and 108
from ACC. On average, each PAT puzzle helped cover three to four
branches. Note that each PAT puzzle was solved in one minute on
average, as shown in Section 5.2 and Section 5.3.

In addition, the time spent by participants on solving PAT puz-
zles and time spent by developers writing test cases should not be
directly compared. In general, much more programming and do-
main knowledge is required to write test cases for a given subject.
On the other hand, the general public can play the puzzles with
little or no domain knowledge of the subject. Therefore, the use
of PAT makes the allocation of resources more effective as the ef-
fort from the general public can be utilized to test many branches.
Thus, developers’ limited time can be focused on writing test cases
for branches not coverable by both automatic test generation tech-
niques and PAT. Furthermore, developers can also play the puzzles
themselves. With their knowledge in the subject programs, they
may solve puzzles that are difficult for most ordinary participants.
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The puzzle solutions they provide may help them cover more pro-
gram branches without the need of writing test cases manually.

Overall, results in this section show that PAT can effectively re-
duce the time and effort required by developers to write test cases.

6. THREATS TO VALIDITY
Threats to external validity. In our evaluation, we used two

medium size open source libraries, ACM and ACC, which are wide-
ly used in the literature as subjects [8, 17, 24]. Since evaluation
requires participant by many users and is time consuming, we e-
valuated PAT on only these two subjects. However, these sub-
jects might not be representative of other kinds of systems such
as closed-source systems.

PAT uses Yices as its SMT solver in puzzle generation. It is
possible that constraints unsolvable by Yices may be solvable by
other SMT solvers. We plan to use more SMT solvers to further
reduce the number of puzzles needed to be solved by humans.

Threats to internal validity. A threat to internal validity comes
from captured objects used in mutation puzzles. Currently, PAT
only captures objects from the up-front test running phase (Sec-
tion 4.1). The quality and quantity of the captured objects may
affect the results of PAT.

Threats to construct validity. The major threat to construct va-
lidity comes from the measurement of usefulness. In the evaluation,
we used the branch coverage criterion to evaluate the usefulness of
PAT. There are other metrics that can be used to evaluate useful-
ness. Therefore, conclusions obtained from our measurement cri-
terion might not be representative of other measurement metrics.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented PAT, which decomposes object

mutation and complex constraint solving problems into small puz-
zles for humans to solve. Our evaluation study shows that humans
can efficiently solve these mutation and constraint problems by vol-
untarily playing the puzzles. The solved puzzles yield non-trivial
test coverage improvement. Overall, PAT successfully leverages
crowd-sourcing to assist test input generation and automatic soft-
ware testing.

We anticipate that future software engineering approaches will
leverage more crowd-sourcing to address challenges in software
engineering research. PAT is a first step in this direction. In fu-
ture, we expect PAT to become an easily extensible platform to fa-
cilitate more types of puzzles related to software testing. The PAT
puzzles and our experiment data are publicly available at http:
//pat.cse.ust.hk:8080/.
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T. Pavlik, and Z. Popović. Verification games: Making verification
fun. In FTfJP’2012: 14th Workshop on Formal Techniques for
Java-like Programs, Beijing, China, June 2012.

[12] E. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood
Cliffs, 1976.

[13] B. Dutertre and L. de Moura. System description: Yices 1.0. In Proc.
SMT-COMP, 2006.

[14] I. Erete and A. Orso. Optimizing constraint solving to better support
symbolic execution. In Proc. CSTVA, pages 310 –315, March 2011.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Proc. PLDI, pages 213–223, 2005.

[16] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data
generation using constraint solving techniques. In Proc. ISSTA,
ISSTA ’98, pages 53–62, 1998.

[17] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende. Closing the
gap between modelling and java. In SLE, volume 5969 of Lecture
Notes in Computer Science, pages 374–383. Springer, 2009.

[18] IBM. T.J. Watson Libraries for Analysis (WALA). Online manual.
http://wala.sf.net.

[19] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. OCAT: Object
Capture-based Automated Testing. In Proc. ISSTA, July 2010.

[20] C. C. Michael, G. McGraw, and M. A. Schatz. Generating software
test data by evolution. IEEE Trans. Softw. Eng., 27:1085–1110,
December 2001.

[21] M. G. Nanda and S. Sinha. Accurate interprocedural null-dereference
analysis for Java. In Proc. ICSE, pages 133–143, Washington, DC,
USA, 2009. IEEE Computer Society.

[22] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed
random test generation. In Proc. ICSE, pages 75–84, Minneapolis,
MN, USA, May 23–25, 2007.

[23] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux. Guided test
generation for coverage criteria. In Proc. ICSM, Sept. 2010.

[24] C.-S. Park and K. Sen. Randomized active atomicity violation
detection in concurrent programs. In Proc. FSE, SIGSOFT
’08/FSE-16, pages 135–145, New York, NY, USA, 2008. ACM.
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