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Abstract—Patch generation is an essential software mainte-
nance task because most software systems inevitably have bugs
that need to be fixed. Unfortunately, human resources are often
insufficient to fix all reported and known bugs. To address
this issue, several automated patch generation techniques have
been proposed. In particular, a genetic-programming-based patch
generation technique, GenProg, proposed by Weimer et al., has
shown promising results. However, these techniques can generate
nonsensical patches due to the randomness of their mutation
operations.

To address this limitation, we propose a novel patch generation
approach, Pattern-based Automatic program Repair (PAR), using
fix patterns learned from existing human-written patches. We
manually inspected more than 60,000 human-written patches and
found there are several common fix patterns. Our approach lever-
ages these fix patterns to generate program patches automatically.
We experimentally evaluated PAR on 119 real bugs. In addition,
a user study involving 89 students and 164 developers confirmed
that patches generated by our approach are more acceptable than
those generated by GenProg. PAR successfully generated patches
for 27 out of 119 bugs, while GenProg was successful for only
16 bugs.

I. INTRODUCTION

Patch generation is an essential software maintenance task,

since most software systems inevitably have bugs that need

to be fixed [1], [2]. Unfortunately, human resources are often

insufficient to generate patches [3], even for known bugs. For

example, Windows 2000 was shipped with more than 63,000

known bugs, largely due to limited resources [4].

To reduce manual effort, several automatic patch generation

techniques have been proposed. Arcuri and Yao introduced

the idea of applying evolutionary algorithms to automatic

patch generation [5]. Dallmeier et al. proposed an approach

leveraging object behavior model and applied this approach

to real bugs from open source projects [6]. Weimer et al.

proposed a population-based technique [7], [8] leveraging

genetic programming [9]. Wei et al. provided a contract-

based technique to automate patch generation and showed its

usefulness by applying it to bugs in Eiffel classes [10].

Among these, the award-winning patch generation tech-

nique, GenProg [7], and its extension [8] showed the most

promising results. To fix a bug in a given program, this

technique generates variants of the program by using crossover

operators and mutation operators such as statement addition,

replacement, and removal [9]. Then, it runs test cases to

evaluate each variant. GenProg iterates these steps until one

of the variants passes all test cases. Any program variant

1918 if (lhs == DBL_MRK) lhs = ...;
1919 if (lhs == undefined) {
1920 lhs = strings[getShort(iCode, pc + 1)];
1921 }
1922 Scriptable calleeScope = scope;

(a) Buggy program. Line 1920 throws an Array Index Out of Bound exception when
getShort(iCode, pc + 1) is equal to or larger than strings.length
or smaller than 0.

1918 if (lhs == DBL_MRK) lhs = ...;
1919 if (lhs == undefined) {
1920+ lhs = ((Scriptable)lhs).getDefaultValue(null);
1921 }
1922 Scriptable calleeScope = scope;

(b) Patch generated by GenProg.

1918 if (lhs == DBL_MRK) lhs = ...;
1919 if (lhs == undefined) {
1920+ i = getShort(iCode, pc + 1);
1921+ if (i != -1)
1922+ lhs = strings[i];
1923 }
1924 Scriptable calleeScope = scope;

(c) Human-written patch.

1918 if (lhs == DBL_MRK) lhs = ...;
1919 if (lhs == undefined) {
1920+ if (getShort(iCode, pc + 1) < strings.length &&

getShort(iCode, pc + 1) >= 0)
1921+ {
1922 lhs = strings[getShort(iCode, pc + 1)];
1923+ }
1924 }
1925 Scriptable calleeScope = scope;

(d) Patch generated by PAR.

Fig. 1: Patches created by GenProg, a human developer, and PAR for Mozilla Bug
#114493.

passing all test cases is regarded as a successful patch.

They experimentally showed that this technique can create

successful patches for 55 out of 105 real bugs [8].

However, GenProg has an inherent limitation: since this

technique basically relies on random program mutations such

as statement addition, replacement, and removal, it is pos-

sible to generate nonsensical patches. Figure 1(b) shows an

example of nonsensical patches generated by GenProg, for

the bug shown in Figure 1(a). Compared to the human-written

patch in Figure 1(c), GenProg’s patch completely removed

the “strings[]” variable from the program. Note that the

program would assign an element of strings to lhs as

long as the given index is valid, while the patch generated

by GenProg does not do this. Although GenProg’s patch can

actually pass all the given test cases, developers would not

accept the patch, as shown in Section IV-C.



3561 public ITextHover getCurrentTextHover() {
3562+ if (fTextHoverManager== null)
3563+ return null;
3564 return fTextHoverManager.getCurrentTextHover();
3565 }

Fig. 2: Example of “Null Checker”, a bug-fix pattern for Null Pointer Exception
bugs. This patch fixes a bug of TextViewer.java described in Eclipse JDT Bug
#26028. It inserts an if statement to avoid calling getCurrentTextHover() when
fTextHoverManager is null.

To address this limitation, we propose a novel patch gen-

eration technique: Pattern-based Automatic program Repair

(PAR). This approach leverages knowledge of human-written

patches. We first carefully inspected 62,656 human-written

patches of open source projects. Interestingly, we found that

there were several common fix patterns. Based on our ob-

servations, we created 10 fix templates, which are automatic

program editing scripts based on the identified fix patterns.

PAR uses these fix templates to generate program patches.

Although creating fix templates requires manual effort, this is

only a one-time cost and these templates are highly reusable

in different contexts after they are created. Figure 1(d) shows a

patch generated by our approach that is similar to the human-

written patch (Figure 1(c)).

To evaluate PAR, we applied it to 119 actual bugs collected

from open source projects including Apache log4j1, Rhino2,

and AspectJ3.

We asked 253 human subjects (89 students and 164 de-

velopers) to compare patches that they would accept, if they

were code reviewers of the anonymized patches generated by

PAR and GenProg. The results of this study clearly showed

that patches generated by PAR are much more acceptable

than patches generated by GenProg. In addition, our approach

generated more successful patches than GenProg: PAR suc-

cessfully generated 27 patches out of 119 bugs, while GenProg

was successful for 16 bugs.

Overall, this paper makes the following contributions:

• Manual observations on human-written patches: Our

investigation of human-written patches reveals that there

are common fix patterns in patches.

• PAR, an automatic patch generation technique lever-
aging fix patterns: We propose a novel automatic patch

generation technique using fix templates derived from

common fix patterns.

• Empirical evaluation: We present the empirical evalua-

tion results by applying PAR to 119 real bugs.

The remainder of this paper is organized as follows. After

presenting common fix patterns identified from human-written

patches in Section II, we propose our approach, PAR, in

Section III. Section IV empirically evaluates our approach,

and Section V discusses its limitations. After surveying the

related work in Section VI, we conclude with directions for

future research in Section VII.

1http://logging.apache.org/log4j/
2https://developer.mozilla.org/en-US/docs/Rhino
3http://www.eclipse.org/aspectj/

TABLE I: Common fix patterns identified from Eclipse JDT’s patches.

Fix Patterns
Altering method parameters

Calling another method with the same parameters

Calling another overloaded method with one more parameter

Changing a branch condition

Adding a null checker

Initializing an object

Adding an array bound checker

Adding a class-cast checker

II. COMMON FIX PATTERNS

This section presents common fix patterns identified from

our manual investigation of human-written patches. We first

describe how we collected and examined a large number of

human-written patches. Then, we report a list of common fix

patterns.

A. Patch Collection

For our investigation, 62,656 human-written patches were

collected from Eclipse JDT4. We used Eclipse JDT, because

it has a long revision history (more than 10 years), and is

widely used in the literature [11], [12]. We used the Kenyon

framework [13] to retrieve bug patches [14].

B. Mining Common Patches

Since our goal is to explore human knowledge in patch

generation, we focused on semantic rather than syntactic

changes [15]. First, we examined whether any semantics are

added in or removed from the patches. Second, we identified

the root cause of each bug and the resolution of the cor-

responding patch. Lastly, similar patches were grouped into

common patterns.

To reduce manual inspection time, we first gathered similar

patches using groums [16]. A groum is a graph-based model

for representing object usage. Although not designed for patch

analysis, groums can help detect semantic rather than syntactic

differences. For each patch, we built two groums from two

consecutive program versions: before and after applying the

patch. Then, the differences of nodes and edges between the

two groums were computed automatically. We could gather

patches having the same differences into a group. Although

a patch group is not necessarily a fix pattern, doing this can

substantially reduce manual inspection time.

To identify fix patterns, we first classified patches as addi-

tive, subtractive, or altering patches. Additive patches insert

new semantic features such as new control flows, while

subtractive patches remove semantic features. Altering patches

just change control flows by replacing semantic features.

We then examined the root causes of bugs and how the

corresponding patches specifically resolved the bugs. For ex-

ample, the patch shown in Figure 2 inserts a new if statement

to avoid a crash when fTextHoverManager is null. In

this example, the root cause is “null value” and the patch

resolves it by adding a new control flow.

Some patches address multiple causes and these are called

composite patches [17]. We divided a composite patch into

multiple independent patches and analyzed them individually.

4http://www.eclipse.org/jdt



C. Fix Patterns

After inspecting the patches, we identify many recurring

similar patches, i.e., fix patterns. Table I shows common pat-

terns identified by our investigation. These top eight patterns

cover almost 30% of all patches we observed. The following

paragraphs describe the details of each pattern:

• Pattern: Altering method parameters.

Example: obj.method(v1,v2) → obj.method(v1,v3)

Description: This pattern can fix a bug since it makes the

caller give appropriate parameters to the method.

• Pattern: Calling another method with the same parameters.

Example: obj.method1(param) → obj.method2(param)

Description: This pattern changes the callee in a method

call statement to fix an inappropriate method invocation.

• Pattern: Calling another overloaded method with one more

parameter.

Example: obj.method(v1) → obj.method(v1,v2)

Description: This pattern adds one more parameter to the

existing method call, but it actually replaces the callee by

another overloaded method.

• Pattern: Changing a branch condition.

Example: if(a == b) → if(a == b && c != 0)

Description: This pattern modifies a branch condition in

conditional statements or in ternary operators. Patches in

this pattern often just add a term to a predicate or remove

a term from a predicate.

• Pattern: Initializing an object.

Example: Type obj; → Type obj = new Type()

Description: This pattern inserts an additional initialization

for an object. This prevents an object being null.

• Pattern: Adding a “null”, “array-out-of-bound”, and “class-

cast” checker.

Example: obj.m1() → if(obj!=null){obj.m1()}

Description: These three patterns insert a new control flow

in a program. They often add a new “if(...)” statement

to avoid throwing exceptions due to an unexpected state of

the program. Figure 2 shows an example of these patterns.

Overall, we found that there are common fix patterns in

human-written patches. Since these major patterns are used in

many real patches (almost 30%) to fix bugs, we may generate

more successful patches by leveraging them in automatic patch

generation.

III. PAR: PATTERN-BASED AUTOMATIC PROGRAM REPAIR

PAR generates bug-fixing patches automatically by using

fix patterns described in Section II-C. Figure 3 illustrates an

overview of our approach. When a bug is reported, (a) PAR

first identifies fault locations, i.e., suspicious statements, by

using existing fault localization techniques [8]. These fault

locations and their adjacent locations are modified to fix the

bug. (b) PAR uses fix templates to generate program variants

(patch candidates) by editing the source code around the fault

Algorithm 1: Patch generation using fix templates in PAR.

Input : fitness function Fit: Program → R

Input : T: a set of fix templates
Input : PopSize: population size
Output: Patch: a program variant that passes all test cases

1 let Pop ← initialPopulation(PopSize);
2 repeat
3 let Pop ← apply(Pop,T);
4 let Pop ← select(Pop,PopSize,Fit);
5 until ∃ Patch in Pop that passes all test cases;
6 return Patch

locations. (c) Program variants are evaluated by a fitness

function that computes the number of passing test cases of

a patch candidate. If a candidate passes all given test cases,

our approach assumes that it is a successful patch [7]. Other-

wise, our approach repeats the patch candidate generation and

evaluation steps.

Our approach leverages evolutionary computing tech-

niques [9] to generate program patches. Evolutionary comput-

ing is an iterative process in which a population is reproduced,

evaluated, and selected. One cycle of these three steps is called

a generation.

Algorithm 1 shows our approach following this evolutionary

computing process. Our approach first takes a fitness function,

fix templates, and population size as input. After creating an

initial population of program variants equal in number to the

given population size (Line 1), it iterates two tasks: generating

new program variants by using fix templates (Line 3, repro-

duction) and selecting top variants based on the given fitness

function (Line 4, evaluation and selection). This iteration stops

when any program variant passes all given test cases (Line

5) or when it meets predefined termination conditions (see

Section IV-A). Algorithm 1 returns a program variant that

passes all test cases as a successful patch for the given bug

(Line 6).

We adopt this evolutionary computing process, because it

is effective in automatic patch generation [8] by efficiently

exploring a large number of program variants. Applying an

evolutionary computing process to program repair was pio-

neered by Weimer et al. [7] and Arcuri et al. [5].

The remainder of this section describes the details of fault

localization, fix templates, and fitness function used in PAR.

A. Fault Localization

To determine fault locations, PAR uses statistical fault

localization based on test cases [8]. This technique assumes

that a statement visited by failing test cases is more likely to

be a defect than other statements. Specifically, this technique

assigns a value to each statement in a program. This value

represents a degree of suspiciousness. Our approach uses that

value to decide whether a statement should be modified.

This localization technique first executes two groups of test

cases: passing and failing. Then, the technique records the

statement-based coverage of both test case groups. Comparing

the coverage of each statement results in one of the following

four outcomes: 1) covered by both groups, 2) covered only by

the passing group, 3) covered only by the failing group, and



if(lhs == DBL_MRK) lhs = ...;
if(lhs == undefined) {

lhs = strings[pc + 1];
}
Scriptable calleeScope = ...;
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Fig. 3: Overview of our pattern-based program repair (PAR) approach. PAR first takes a buggy program and (a) identifies fault locations. Then, (b) it generates program variants
by using fix templates, which are program editing scripts derived from common patch patterns (Section II-C). The templates modify source code around the fault locations. These
variants are patch candidates. Finally, (c) patch candidates are evaluated by using test cases. If a candidate passes all test cases, we assume it is a patch for the bug. Otherwise, our
approach repeats Steps (b) and (c) to generate another patch.

1 [Null Pointer Checker]
2 P = program
3 B = fault location
4

5 <AST Analysis>
6 C ← collect object references (method invocations,

field accesses, and qualified names) of B in P
7

8 <Context Check>
9 if there is any object references in C ⇒ continue

10 otherwise ⇒ stop
11

12 <Program Editing>
13 insert an if() statement before B
14

15 loop for all objects in C {
16 insert a conditional expression that checks whether a

given object is null
17 }
18 concatenate conditions by using AND
19

20 if B includes return statement {
21 negate the concatenated conditional expression
22 insert a return statement that returns a default value

into THEN section of the if() statement
23 insert B after the if() statement
24 } else {
25 insert B into THEN section of the if() statement
26 }

Fig. 4: Null pointer checker fix template. This template inserts an if() statement
checking whether objects are null.

4) not covered by either group. We assign 0.1 to statements

with the first outcome and 1.0 to statements with the third

outcome. Otherwise, 0.0 is assigned.

Our approach uses the assigned values to determine the

probability of each statement to be edited. For example, 1.0

implies that the statement is always edited while 0.1 implies

that it is edited once in 10 generations.

We adopted the simple fault localization technique used

in [8], but other fault localization techniques can be used to

determine which statements to mutate.

B. Fix Templates

Fix templates are program editing scripts that rewrite a

program’s Abstract Syntax Tree (AST). Each fix template

defines three steps to edit a program: 1) AST analysis, 2)

context check, and 3) program editing. The AST analysis

step scans a given program’s AST and analyzes the given

fault location and its adjacent locations. The context check

step examines whether the given program can be edited by

a template by inspecting the analyzed AST. If it is editable,

our approach rewrites the given program’s AST based on the

predefined editing script in the template (the program editing

step).

In this section, we first describe how to create and apply the

fix templates. Then, we provide the list of the fix templates

used in PAR.

1) Creating Fix Templates: We first carefully inspect

patches in each pattern (Table I). Since program patches

change a program’s AST, we can compute AST differences

between before and after applying a patch. We transform

these differences into editing scripts in a fix template. Note

that patches in the same pattern may have various ASTs

even though their semantic changes are identical. We try to

generalize these changes in fix templates by identifying the

most common change set.

For the context check step, we extract context information

such as the existence of an array access from patches, which is

necessary to check whether our approach can edit a program

by using a fix template. Then, we add the AST analysis

step to the template, which scans a program’s AST at the

fault location and extracts AST elements, such as variable

names and types. We identify these elements by looking up

fix patterns. These elements are used in the context check and

the program editing steps.

For example, a fix template, Null Pointer Checker, is shown

in Figure 4. This template is derived from the “Adding a null

checker” pattern shown in Section II-C. To create this tem-

plate, we first generalize how patches in the pattern change the

ASTs of programs. Commonly, they insert an if() statement

containing the fault location. The detailed program editing

script is shown in Lines 13 – 26 (the program editing step).

Then, we identify common context information necessary for

program editing, which will be added to the context check

step. For this template, the context check step verifies that the

fault location must have at least one object reference (Lines

9–10). Finally, we add the AST analysis step (Line 6), which

collects all object references in the given fault location.

In the same manner, we have created 10 fix templates as

shown in Table II. Although creating fix templates requires

manual effort, this is only a one-time cost, and the templates

can be reused to fix other similar bugs. Our evaluation in Sec-

tion IV confirms that the templates created from fix patterns

in Eclipse JDT can be successfully applied to fix bugs in other

programs such as Rhino.



TABLE II: Fix templates derived from patterns in Section II-C.

Template Name Description
Parameter Replacer For a method call, this template seeks variables or expressions whose type is compatible with a method parameter within the same scope. Then, it replaces

the selected parameter by a compatible variable or expression.

Method Replacer For a method call, this template replaces it to another method with compatible parameters and return type.

Parameter Adder and
Remover

For a method call, this template adds or removes parameters if the method has overloaded methods. When it adds a parameter, this template search for
compatible variables and expressions in the same scope. Then, it adds one of them to the place of the new parameter.

Expression Replacer For a conditional branch such as if() or ternary operator, this template replaces its predicate by another expression collected in the same scope.

Expression Adder
and Remover

For a conditional branch, this template inserts or removes a term of its predicate. When adding a term, the template collects predicates from the same
scope.

Null Pointer Checker For a statement in a program, this template adds if() statements checking whether an object is null only if the statement has any object reference.

Object Initializer For a variable in a method call, this template inserts an initialization statement before the call. The statement uses the basic constructor which has no
parameter.

Range Checker For a statement with array references, this template adds if() statements that check whether an array index variable exceeds upper and lower bounds
before executing statements that access the array.

Collection Size
Checker

For a collection type variable, this template adds if() statements that check whether an index variable exceeds the size of a given collection object.

Class Cast Checker For a class-casting statement, this template inserts an if() statement checking that the castee is an object of the casting type (using instanceof
operator).

2) Applying Fix Templates: PAR applies a template to a

fault location in each individual generation. As described in

Section III-A, each fault location has a selection probability,

and PAR uses that probability to determine which locations

will be modified by a fix template. Since our approach follows

the evolutionary computing process, each location can be

edited by multiple templates over several generations.

When applying a fix template, PAR first takes a program and

a fault location as input values. PAR then executes the AST

analysis step in the template to collect necessary information

such as variable types and method parameters. By using the

collected information, PAR runs the context check step to

figure out if the program has appropriate context to apply

the given template. If the context check passes, our approach

executes the template’s program editing step to rewrite the

program’s AST of the given fault location. AST rewriting

includes node addition, parameter replacement, and predicate

removal. The modified program is a new program variant that

PAR regards as a patch candidate.

It is possible that several templates pass the context check-

ing for given fault locations. In this case, PAR randomly selects

one of the passing templates.

Figure 5 shows an example of applying the null pointer

checker template (see Figure 4) to generate a new program

variant from NativeRegExp.java for fixing Rhino Bug

#76683. In this example, Line 4 in Figure 5(a) is a fault

location. Our approach checks whether the location contains

any object reference to ensure the Null Pointer Checker

template is applicable. Since the location has two references,

the template is applicable. Then, our approach generates a new

program variant by applying the editing script in the template:

inserting an if statement containing the fault location as

described in Figure 4. As a result, a new program variant (i.e.,

patch candidate) has a predicate that checks whether the two

objects are not null.

3) List of Fix Templates: Table II lists all 10 fix templates

used in our approach. The Parameter Replacer template is de-

rived from the “Altering method parameters” pattern in Table I.

Its editing script can change parameters for a method call. The

candidates of a substitutive parameter are collected from the

same scope of the target method call at the fault location, and

they must have compatible types. These parameter candidates

01 if (kidMatch != -1) return kidMatch;
02 for (int i = num; i < state.parenCount; i++)
03 {
04 state.parens[i].length = 0;
05 }
06 state.parenCount = num;

(a) Buggy Program: the underlined statement is a fault location.

⇓
INPUT: state.parens[i].length = 0;

<Null Pointer Checker>

1. Analyze: Extract obj refer� state, state.parens[i]
2. Context Check: object references?: PASS
3. Edit: INSERT 

    ...    ... 
+ if(                                           ) {
             state.parens[i].length = 0;+ }    ...    ... 

                                           
t t [[iii] l] l thth 000

  state != null && state.parens[i] != null

OUTPUT:  a new program variant
⇓

01 if (kidMatch != -1) return kidMatch;
02 for ( ... )
03 {
04+ if( state != null && state.parens[i] != null)
05 state.parens[i].length = 0;
06 }
07 state.parenCount = num;

(b) After applying a fix template: a patch generated by PAR. As shown in the fix template,
corresponding statements have been edited.

Fig. 5: Real example of applying a fix template to NativeRegExp.java to fix Rhino
Bug #76683.

are sorted according to the distance (the number of nodes)

from the given fault location in the given program’s abstract

syntax tree. Our approach selects one of them based on the

distance and replaces method parameters of the statement at

the given fault location. Parameters with a shorter distance are

more likely to be selected.

The Method Replacer template replaces the name of the

callee in method call statements. This template includes a

context check step which scans other method calls having

the same parameters and return type in the same program

scope. If there are several candidates, our approach randomly

selects one of them to replace the method name in the given

fault location. The template is derived from “Calling another

method with the same parameters” in Table I.

We created the Parameter Adder and Remover template

to make a method call have more or fewer parameters. This



TABLE III: Data set used in our experiments. “LOC” (Lines of code) and “# statements”
represent the size of each subject. “# test cases” is the number of test cases used for
evaluating patch candidates generated by PAR.

Subject # bugs LOC # statements # test cases Description
Rhino 17 51,001 35,161 5,578 interpreter

AspectJ 18 180,394 139,777 1,602 compiler
log4j 15 27,855 19,933 705 logger
Math 29 121,168 80,764 3,538 math utils
Lang 20 54,537 40,436 2,051 helper utils

Collections 20 48,049 35,335 11,577 data utils
Total 119 483,004 351,406 25,051

template is applicable only if there are overloaded methods for

the target method. Our approach selects one of the available

overloaded methods randomly. When adding parameters, the

template’s script specifies how to scan the same scope of the

given fault location for variables compatible with the new

place. When removing parameters, our approach just filters

out parameters not included in the selected overloaded method.

This template is derived from the “Calling another overloaded

method with one more parameter” pattern in Table I.

Expression Replacer and Expression Adder and Remover
are derived from patches modifying predicates in conditional

or loop statements such as if() or while(). Many patches

we collected change or introduce new predicates to fix a bug

as described by the “Changing a branch condition” pattern in

Table I. To replace or add a predicate, our approach first scans

predicates in the same scope of the given fault location. These

are sorted according to their distances from the fault location

in the given program’s AST. Our approach selects one of them

based on the distance and replaces or adds the predicate into

the target statements at the fault location. When removing a

term from a given predicate, our approach randomly selects a

term to remove.

We created Object Initializer which inserts an initialization

statement into the fault location. The initializer of this state-

ment is the basic constructor without parameter. This statement

prevents the variable from being null. This template is

derived from the “Initializing an object” pattern in Table I.

Null Pointer Checker, Range Checker, Collection Size
Checker, and Class Cast Checker are derived from correspond-

ing patterns in Table I. By using these patterns, our approach

can insert a new if() statement to check if there is any

abnormal state such as null pointer, index out of bound, or

wrong class-casting.

C. Fitness Evaluation

The fitness function of our approach takes a program variant

and test cases, and then computes a value representing the

number of passing test cases of the variant. This fitness

function is adapted from [7], [8]. All the test cases are

collected from the corresponding code repository for a given

program. The resulting fitness value is used for evaluating and

comparing program variants in a population: “which variant
is better than others?” Based on fitness values of program

variants, PAR chooses program variants by using a tournament

selection scheme [18] (Line 4 in Algorithm 1).

IV. EVALUATION

We present the experimental evaluation of our approach

in this section. Specifically, our experiments are designed to

address the following research questions:

• RQ1 (Fixability): How many bugs are fixed success-

fully?

• RQ2 (Acceptability): Which approach can generate more

acceptable bug patches?

A. Experimental Design

To evaluate PAR, we collected 119 real bugs from open

source projects as shown in Table III. For each bug, we

applied both PAR and GenProg [8] to generate patches. Then,

we examined how many bugs are successfully fixed by each

approach (RQ1). We also conducted a user study to compare

the patch quality of the two approaches (RQ2).

Six projects in Table III are written in Java. We chose

those projects for two main reasons. First, Java is one of the

most popular programming languages5, so there are many Java

projects. Second, thanks to JUnit6 and other Java-based testing

frameworks, Java projects often include many test cases.

Many open source projects maintain their own issue tracking

systems such as Bugzilla and JIRA. For our experiment,

six open source projects including Mozilla Rhino, Eclipse

AspectJ, Apache Log4j, and Apache Commons (Math, Lang,

Collections) were selected, since they are commonly used in

the literature [6], [19], [20] and have well-maintained bug

reports. We tried to search their corresponding issue trackers

for reproducible bugs. Among them, we randomly selected 15

to 29 bugs per project, since some projects had too many bugs.

Although we invested our best effort in bug collection, the

collected bugs did not represent the entire bugs. However, to

our best knowledge, 119 was the largest number in automatic

patch generation evaluation to date.

For each bug, we collected all available test cases from

their corresponding code repositories including failing test

cases that reproduce the bugs. Projects often include many

test cases since developers continuously write and maintain

test cases [21]. In our experiment, we used all test cases, as

shown in Table III, to validate a candidate patch [6], [7], [10].

When applying PAR and GenProg to each bug, we con-

ducted 100 runs. Arcuri and Briand recommended at least

1,000 runs for evaluating randomized algorithms [22], but we

conducted 100 runs due to time limitation. Our experiment

totaled 23,800 runs (100 × 119 bugs × 2 approaches).

Each run stopped when it took more than 10 generations

or eight hours (wall-clock time), at which time we assumed

that the run failed to generate a successful patch. We used

exactly the same termination condition as used in [8] for fair

comparison.

In addition, we used the same population size (=40) as used

in GenProg. We also used the same parameters, such as the

mutation probability suggested in [8] for running GenProg.

5http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
6http://www.junit.org/



TABLE IV: Patch generation results. Among 119 bugs, PAR successfully fixed 27 bugs
while GenProg was successful for only 16 bugs. Note that 5 bugs were fixed by both
approaches. We used these 5 bugs in our comparative study for acceptability evaluation.

Subject # bugs # bugs fixed # bugs fixed # bugs fixed
by GenProg by PAR by both

Rhino 17 7 6 4
AspectJ 18 0 9 0

log4j 15 0 5 0
Math 29 5 3 1
Lang 20 1 0 0

Collections 20 3 4 0
Total 119 16 27 5

This experiment was conducted on several machines with

two hexa-core 3GHz CPUs and 16GB RAM. When running

test cases, we executed them in parallel to accelerate the

experiment. In addition, we memoized the fitness value of a

program variant to prevent re-evaluation of the same variant

again, as described in [7].

B. RQ1: Fixability

Table IV shows patch generation results of PAR and Gen-

Prog. PAR successfully fixed 27 out of 119 bugs, while

GenProg successfully generated patches for only 16 bugs.

Among fixed bugs, 5 (4 of Rhino + 1 of Math) were fixed

by both PAR and GenProg. Note that the two approaches

generated different patches for these five bugs. However, these

patches passed all the given test cases successfully. These

patches will be used in our comparative study for patch

acceptability (Section IV-C).

Using fix templates is effective for fixing bugs. The Range

Checker template generated a patch for Rhino bug #114493

by inserting an if() statement. This patch is shown in

Figure 1(d). AspectJ bug #131933 could be fixed by the Class

Cast Checker template because its buggy statements used an

invalid caster. The “Expression Replacer” and “Expression

Adder and Remover” templates could generate successful

patches for two Rhino bugs (#192226 and #222635) that had

invalid conditional expressions in buggy if() statements.

Note that we identified common fix patterns from Eclipse

JDT and used them to create fix templates. PAR leverages these

templates to generate patches for bugs of other projects such

as Mozilla Rhino and Apache Commons Math. This indicates

that fix templates learned from one project are reusable for

other projects.

Although we have introduced only a small number of fix

templates in this paper, those templates obviously expanded

the fixability of patch generation. Identifying more fix tem-

plates from existing patches might improve fixability further.

This remains as future work.

GenProg fixed about 10% of the bugs in our evaluation,

while a recent systematic study [8] reported that it can fix

almost 50% of the bugs in their subjects written in C language.

Perhaps, this is because GenProg’s mutation operators might

be less effective in Java programs. Most Java programs tend

to decompose their functionality into small-sized classes and

methods. This limits the number of statements that can be

used in GenProg’s mutation operators since it collects and uses

statements in the same scope of the given fault location. On

the other hand, C programs usually have many global variables

and larger methods. This may provide more chances to use

bug-fixing statements in mutation (the authors of GenProg

showed a patch for global variable accessor crashes as a

representative example of successful cases in [8]). However,

this does not imply that our subject selection was biased

against GenProg. In our experiments, PAR had the same

constraints as GenProg. In addition, our approach is not limited

to Java programs.
�

�

�

�

PAR generated patches for 27 bugs, whereas
GenProg resolved 16 bugs.

C. RQ2: Acceptability

In this section, we measure the acceptability of patches

generated by PAR and GenProg. Since all the successful

patches pass the provided test cases, it is challenging to select

more or less acceptable patches systematically. Instead, we

presented anonymized patches and asked human subjects to

select more or less acceptable patches.

To answer RQ2, we formulated the following two null

hypotheses.

• H10: Patches generated by PAR and GenProg have no

acceptability difference from each other.

• H20: Patches generated by PAR have no acceptability

difference from human-written patches.

The corresponding alternative hypotheses are:

• H1a: PAR generates more acceptable patches than Gen-

Prog.

• H2a: Patches generated by PAR are more acceptable than

human-written patches.

1) Subjects: For this study, we recruited two different

participant groups: computer science (CS) students and devel-

opers. The student group consisted of 17 software engineering

graduate students who have two to five-year Java programming

experience. For the developer group, 68 developers partici-

pated in our study. We recruited these developers from both

online developer communities such as “stackoverflow.com”

and “coderanch.com”, and software companies such as Daum,

a leading Internet software company in Korea. They were

asked to participate in this study only if they had Java

programming experience.

2) Study Design: Our user study had five sessions. In each

session, we showed one of the five bugs fixed by both PAR and

GenProg, shown in Table IV. Each session explained in detail

why a bug is problematic and gave a link to the corresponding

bug report. Then, the session listed three anonymized patches:

a human-written patch and patches generated by PAR and

GenProg. Each participant was asked to compare them as

a patch reviewer and to report their rankings according to

acceptability.

For this study, we built a web-based online survey engine

that shows five sessions in a random sequence. We gave

the engine’s hyperlink to both the student and the developer

groups. At the beginning of our survey, we emphasized that

the presented patches can pass all the given test cases collected

from the corresponding project. There was no time limit, so



TABLE V: Average rankings evaluated by 17 students (standard deviation is shown in
parentheses). The lower values indicate that the patch obtained higher rankings on average
by the evaluators.

Bugs Human PAR GenProg
Math #280 1.33 (0.62) 2.27 (0.59) 2.40 (0.83)

Rhino #114493 2.00 (0.54) 1.33 (0.62) 2.67 (0.72)
Rhino #192226 1.47 (0.64) 1.67 (0.62) 2.67 (0.72)
Rhino #217379 1.69 (0.70) 1.50 (0.63) 2.81 (0.40)
Rhino #76683 2.13 (0.51) 1.07 (0.26) 2.80 (0.41)

Average 1.72 (0.67) 1.57 (0.68) 2.67 (0.64)

TABLE VI: Average rankings evaluated by 68 developers (standard deviation is shown
in parentheses). The lower values indicate that the patch obtained higher rankings on
average by the evaluators.

Bugs Human PAR GenProg
Math #280 1.92 (0.76) 2.00 (0.82) 2.08 (0.95)

Rhino #114493 1.60 (0.63) 2.40 (0.74) 2.00 (0.93)
Rhino #192226 2.00 (0.68) 1.79 (0.98) 2.21 (0.80)
Rhino #217379 1.62 (0.77) 1.69 (0.63) 2.69 (0.63)
Rhino #76683 1.92 (0.64) 1.23 (0.43) 2.85 (0.38)

Average 1.81 (0.70) 1.82 (0.80) 2.36 (0.90)

that the participants had spend enough time inspecting and

ranking the patches.
3) Result — Students: Average patch acceptability rankings

assigned by 17 student participants are shown in Table V.

Consistently, patches generated by PAR are ranked higher than

those by GenProg for all five bugs. The average rankings of

patches generated by PAR is 1.57, and its standard deviation is

0.68. The average ranking and standard deviation of patches

generated by GenProg are 2.67 and 0.64, respectively. Ranking

differences between PAR and GenProg are statistically sig-

nificant (p-value =0.000 < 0.05). The Wilcoxon signed-rank

test [23] was used for this statistical test since we compared

two related samples and these samples are non-parametric.

Based on the results, we can reject the null hypothesis H10
for the student group.

Some students ranked patches generated by PAR as good

as or even higher than human-written patches. However, this

may not be necessarily indicate that patches generated by PAR

are better than human-written patches (average: 1.72, standard

deviation: 0.67). Their ranking differences are not statistically

significant (p-value =0.257 > 0.05). Thus, we cannot reject

the null hypothesis H20 for the student group.
4) Result — Developers: The survey results of 68 devel-

opers are shown in Table VI. Similar to Table V, patches

generated by PAR are ranked higher than those by GenProg

except for Rhino Bug #114493. For this bug, the developers

might think the patch generated by GenProg was more ac-

ceptable than the patch generated by PAR, since it assigned a

default value when the lhs variable was undefined (see

Figure 1(b)). However, this does not represent the overall

results.
The average rankings of PAR and GenProg are 1.82 and

2.36, respectively. Their standard deviation values are 0.80 and

0.90. Since ranking differences between PAR and GenProg are

statistically significant (p-value =0.016 < 0.05), we can reject

the null hypothesis H10 for the developer group.
The average ranking and standard deviation of human-

written patches are 1.81 and 0.70, respectively. Ranking

differences between patches generated by PAR and human-

written patches are not statistically significant (p-value =0.411

> 0.05). Thus, the null hypothesis H20 cannot be rejected.

TABLE VII: Indirect patch comparison results.

Selection # response
PAR 130 (21%)
Both 175 (28%)

Human 229 (37%)
Not Sure 87 (14%)

Total 621 (100%)
(a) PAR comparison results.

Selection # response
GenProg 68 (20%)

Both 40 (12%)
Human 176 (51%)

Not Sure 60 (17%)
Total 344 (100%)

(b) GenProg comparison results.

Our two comparative studies (student and developer) con-

sistently show that patches generated by PAR have higher

rankings than those generated by GenProg on average. In

addition, this result is statistically significant. Between PAR

and human-written patches, both studies show different re-

sults but ranking differences are not statistically significant.

This implies that our approach can generate more acceptable

patches than GenProg. In addition, patches generated by PAR

are comparable to human-written patches.

5) Indirect Patch Comparison: The user studies in Sec-

tions IV-C3 and IV-C4 showed the direct patch comparison

results, but the results are limited to five bugs fixed by both

approaches.

To address this issue, we conducted a user study to indirectly

compare the acceptability of all 43 patches generated by PAR

(27 patches) and GenProg (16 patches), by comparing them

to the corresponding human-written patches. We built a web-

based online survey engine for this study. Each survey session

showed a pair of anonymized patches (one from human and

the other from PAR or GenProg for the same bug) along

with corresponding bug information. Participants were asked

to select more acceptable patches if they were patch reviewers.

In addition, participants were given the choice of both are

acceptable or not sure if they could not determine acceptable

patches. We randomly presented all 43 sessions to participants,

and they could answer as many sessions as they wanted.

For this study, we recruited participants by posting online

survey invitations in software developer communities and

personal twitters. We also sent invitation emails to CS un-

dergraduate students who took the Software Engineering class

in Spring 2012 at the Hong Kong University of Science and

Technology, since they have Java programming knowledge. In

all survey invitations, we clearly stated that only developers/s-

tudents who have Java experience are invited.

The survey results are shown in Table VII. Total 168

(72 students and 96 developers) participants answered 965

sessions. The session response rate (PAR:GenProg = 621:344)

is similar to the rate of successful patches generated by each

approach (PAR:GenProg = 27:16). This implies that our survey

sessions were randomly presented and answered.

As shown in Table VII(a), participants chose patches gen-

erated by PAR as more acceptable in 130 (21%) out of 621

sessions and selected “both were acceptable” in 175 (28%)

sessions. In total, participants chose patches generated by PAR

as acceptable patches in 305 (49%) sessions (PAR: 21% +
both: 28%). On the other hand, participants selected patches

generated by GenProg as acceptable patches in 108 (32%) out

of 344 sessions (GenProg: 20% + both: 12%), as shown in

Table VII(b).



This indirect comparison result also shows that patches

generated by PAR are more acceptable.
�

�

�

�

PAR generates more acceptable patches than
GenProg does.

V. DISCUSSION

This section discusses unsuccessful patches generated by

PAR, and identifies threats to validity of our experiments.

A. Unsuccessful Patches

In Table IV, 92 out of 119 bugs were not fixed by our

approach. We examined the main cause of patch generation

failures and identified two main challenges: branch conditions
and no matching patterns, as shown in Table VIII. We discuss

each challenge in detail.

Branch conditions indicates that PAR cannot generate predi-

cates to satisfy branch conditions at the fault location by using

fix templates. PAR could not fix 26 (28%) bugs due to this rea-

son. For example, Rhino bug #181834 occurs when the scope
variable is assigned to a NativeCall or NativeWith type

object. To fix this bug, an appropriate control statement must

be inserted before the fault location. This control statement

has a predicate checking the type of scope. Generating this

predicate from scratch is challenging.

No matching pattern indicates that PAR cannot generate

a successful patch for a bug since no fix template has

appropriate editing scripts. PAR could not fix 66 (72%)

bugs due to this reason. For example, to fix AspectJ Bug

#109614, its human-written patch added a control statement

before the fault location: “if(sources[i] instanceof
ExceptionRange)...”. However, ExceptionRange
cannot be inferred from the fault location. For PAR to fix this

bug, matching fix templates must be created.

We inspected 11 bugs fixed by GenProg but failed to be

fixed by PAR. Our approach could not fix 7 out of 11 bugs,

since there are no matching fix patterns for these bugs. This

implies if we add more fix patterns, these bugs might be

fixable by our approach. Adding more fix patterns remains as

future work. The other 4 bugs belong to the branch conditions
category.

B. Threats to Validity

We identify the following threats to the validity of our

experiments.

• Systems are all open source projects: We collected bugs

only from open source projects to examine our approach.

Therefore, these projects might not be representative of

closed-source projects. Patches of closed-source projects

may have different patterns.

• Some participants of our user studies may not be
thoroughly qualified. In our survey invitations for the

developer group, we clarified that only developers can

participate in the survey. However, we could not fully

verify the qualifications of the survey participants.

TABLE VIII: Causes of unsuccessful patches.

Cause # of bugs
Branch condition 26 (28%)

No matching pattern 66 (72%)

VI. RELATED WORK

Weimer et al. [7] proposed GenProg, an automatic patch

generation technique based on genetic programming. This

approach randomly mutates buggy programs to generate sev-

eral program variants that are possible patch candidates. The

variants are verified by running both passing and failing test

cases. If a variant passes all test cases, it is regarded as a

successful patch of a given bug. In 2012, the authors extended

their previous work by adding a new mutation operation,

replacement and removing the switch operation [8]. In addi-

tion, they provided systematic evaluation results with 105 real

bugs [8]. Although the evaluation showed that GenProg fixed

55 out of 105 bugs, GenProg can generate nonsensical patches

that may not be accepted by developers as shown Section IV-C.

Fry et al. conducted a human study to indirectly measure

the quality of patches generated by GenProg by measuring

patch maintainability [24]. They presented patches to partic-

ipants and asked maintainability related questions developed

by Sillito, Murphy, and Volder [25]. In addition, they pre-

sented machine-generated change documents [26] along with

patches to participants. They found that machine-generated

patches [8] with machine-generated documents [26] are com-

parable to human-written patches in terms of maintainability.

We also compared machine-generated patches with human-

written patches. However, instead of asking the maintainabil-

ity related questions, we asked participants which patch is

more/less acceptable for direct comparison. In addition, we

compared patches generated by two different patch generation

approaches, GenProg and PAR.

Demsky et al. focused on avoiding data structure incon-

sistency [27], [28]. Their approach checks data structure

consistency by using formal specifications and inserts run-

time monitoring code to avoid inconsistent states. However,

this technique provides workarounds rather than actual patches

since it does not modify source code directly.

Arcuri et al. introduced an automatic patch generation

technique [5]. Although they also used genetic programming,

their evaluation was limited to small programs such as bub-

ble sorting and triangle classification, while our evaluation

includes real bugs in open source software. Their approach

relies on formal specifications, which our approach does not

require.

Wei et al. proposed a contract-based patch generation tech-

nique [10]. This technique also relies on specifications (i.e.,

contracts). In addition, this technique can generate only four

kinds of program variants. These variants check only contract

violations, whereas our approach generalizes human-written

patches and generates various program variants.

PACHIKA [6] leverages object behavior models. PACHIKA

is evaluated on 26 bugs from Mozilla and Eclipse. However,

PACHIKA created successful patches for only three out of

26 bugs in their evaluation since it generates only a limited



number of program variants (i.e., recorded object behavior).

Our evaluation also includes these 26 bugs (see Table III), and

PAR successfully fixed 15 bugs including the three bugs fixed

by PACHIKA.
Martinez and Monperrus identified common program repair

actions (patterns) from around 90,000 fixes [15]. They claimed

that most common repair actions are semantic change patterns

such as “Additional functionality.” However, their identified

patterns are too abstract and coarse-grained to be used in

automatic patch generation. Our fix templates described in

Section III-B3 are concrete enough to be used in automatic

patch generation.
SYDIT [29] automatically extracts an edit script from a

program change. Its limitation is that a user must specify a

program change to extract an edit script and a target program

to apply it. In addition, SYDIT cannot take multiple pro-

gram changes to extract a (generalized) edit script. SYDIT’s

authors proposed an improved technique called LASE [30].

This technique can take multiple changes to extract more

general edit scripts and automatically find a target program.

PAR can leverage these techniques to automatically create fix

templates.

VII. CONCLUSION

In this paper, we have proposed a novel patch generation

approach, PAR, learned from human-written patches to address

a limitation of existing techniques such as GenProg [7], [8]:

generating nonsensical patches. We first manually inspected

human-written patches and identified common fix patterns,

which we then used in automatic patch generation. Our ex-

perimental results on 119 real bugs showed that our approach

successfully generated patches for 27 bugs, while GenProg

was successful for 16 bugs. To evaluate whether the generated

patches were acceptable for fixing bugs, we conducted a user

study of 253 participants (89 students and 164 developers).

This study showed that our approach generated more accept-

able patches than GenProg, and our patches were comparable

to human-written patches.
Our pattern-based approach might be useful in improving

other automatic patch generation techniques. For example,

contract-based techniques [10] alone can generate only four

kinds of variants for each bug, but fix templates could be

used to generate more program variants for such techniques.

PAR could also be used to generate more program variants in

model-based techniques [6].
Our future work includes automatic fix template mining and

balanced test case generation. First, although the proposed fix

templates are successfully used for generating patches, more

fix templates are desirable to fix more bugs efficiently. We plan

to investigate more human-written patches and develop auto-

matic algorithms to extract fix templates. Second, our approach

requires test cases to evaluate program variants, but often few

failing test cases are available for bugs. Since the imbalance

in test cases may lead to inaccurate patch evaluation, we

will develop failing-test generation techniques by leveraging

existing automatic testing techniques [31], [32], [20].

All materials used in this paper and detailed patch genera-

tion results are publicly available at

https://sites.google.com/site/autofixhkust/
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