
Where Should We Fix This Bug?
A Two-Phase Recommendation Model

Dongsun Kim, Member, IEEE, Yida Tao, Student Member, IEEE,

Sunghun Kim, Member, IEEE, and Andreas Zeller, Member, IEEE

Abstract—To support developers in debugging and locating bugs, we propose a two-phase prediction model that uses bug reports’

contents to suggest the files likely to be fixed. In the first phase, our model checks whether the given bug report contains sufficient

information for prediction. If so, the model proceeds to predict files to be fixed, based on the content of the bug report. In other words,

our two-phase model “speaks up” only if it is confident of making a suggestion for the given bug report; otherwise, it remains silent. In

the evaluation on the Mozilla “Firefox” and “Core” packages, the two-phase model was able to make predictions for almost half of all

bug reports; on average, 70 percent of these predictions pointed to the correct files. In addition, we compared the two-phase model

with three other prediction models: the Usual Suspects, the one-phase model, and BugScout. The two-phase model manifests the best

prediction performance.

Index Terms—Bug reports, machine learning, patch file prediction

Ç

1 INTRODUCTION

IN modern software development, bugs are inevitable.
Maintainers of software systems thus find themselves

faced with a stream of bug reports, failure reports stored and
managed through issue tracking systems. A bug report holds
information about a specific software failure, including the
failure symptoms, the affected platforms, and a scenario on
how to reproduce the failure.

For a developer, all this information is helpful to find

and fix the bug—but rarely sufficient: Already the first

decision, namely deciding on where to start the investiga-

tion, requires expert knowledge about where features are

located in the system, and where similar bugs have been

fixed in the past. Indeed, developers might even get stuck in

this first step, struggling in finding the right location to start

debugging [1], [2].
In this paper, we present an approach that automatically

suggests the files where a bug will most likely be fixed based on

its bug report’s content. Specifically, our approach extracts

features such as the summary, the initial description,

product version, and platform descriptors from the given

bug report. For a small number of known bugs, we associate

these features with actual fix locations and train a prediction

model that later predicts the fix location for a new bug report.
However, this basic idea, which we refer to as the one-phase

prediction, does not work well. Many bug reports do not

contain enough of the information required for a good
prediction. This observation motivates us to propose a two-

phase model where we first check whether a bug report is
“predictable” and only if it is “predictable” do we proceed to
predict a fix location; otherwise, we leave everything as it is.
This way, if we make a prediction, it can be very precise.

In evaluation on Mozilla “Firefox” and “Core” packages,
the two-phase model was able to make predictions for
almost half of all bug reports; on average, 70 percent of the
predictions pointed to the correct files. The two-phase model
was further compared with the Usual Suspects baseline, the
one-phase model, and BugScout [1], which is a state-of-the-
art model that locates buggy source files from bug reports.
Among these four prediction models, our two-phase model
shows the best performance in terms of prediction like-
lihood, precision, and recall. In addition, the two-phase
model ranks correctly predicted files at higher positions
compared to the three other models.

In general, this paper makes the following contributions:

1. A two-phase model for recommendations. We weed out
“unpredictable” inputs to promote precision and
avoid possibly misleading recommendations. To the
best of our knowledge, this is the first time a
prediction model handles the data quality issue
during prediction.

2. A strong baseline. We introduce the baseline of the
“Usual Suspects”—the files most frequently fixed,
which would be natural candidates for future fixes.

3. A comprehensive evaluation. We evaluate the predic-
tion performance (i.e., likelihood, precision, and
recall) of the two-phase model and compare it with
the Usual Suspects, the one-phase model, and
BugScout. Our evaluation shows the effectiveness
of the two-phase predictor over the other models
and suggests tangible benefits when deployed
in practice.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 11, NOVEMBER 2013 1597

. D. Kim, Y. Tao, and S. Kim are with the Department of Computer Science
and Engineering, Hong Kong University of Science and Technology, Clear
Water Bay Road, Kowloon, Hong Kong.
E-mail: {darkrsw, idagoo, humkim}@cse.ust.hk.

. A. Zeller is with the Universität des Saarlandes-Informatik, Campus E1 1,
Saarbrücken 66123, Germany. E-mail: zeller@acm.org.

Manuscript received 9 Feb. 2012; revised 11 Nov. 2012; accepted 4 May 2013;
published online 20 May 2013.
Recommended for acceptance by T. Menzies.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2012-02-0027.
Digital Object Identifier no. 10.1109/TSE.2013.24.

0098-5589/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

The remainder of this paper is organized as follows:
Section 2 discusses related work. Section 3 describes our
approach, detailing the one-phase and two-phase setups.
Section 4 introduces our evaluation setup. Section 5
presents the results, which are then discussed in Section 6.
After discussing threats to validity in Section 7, Section 8
closes with the conclusion and future work.

2 RELATED WORK

2.1 Bug Localization

Bug localization has been widely studied in the past
decades. Various techniques have been proposed which
mainly leverage dynamic and static analyses. Recent work
has also applied repository-mining techniques to reveal and
locate software bugs.

Dynamic analysis. Several studies have analyzed a
program’s runtime behavior to discover bugs. One line of
research is statistical debugging [3], [4], [5]. The basic
concept is to collect statistics characterizing a program’s
runtime behavior over multiple executions. The collected
statistics, such as program invariants or predicate evalua-
tions, are analyzed afterward to compute the probability of
them being faulty [3].

Some fault localization approaches use test suite execu-
tion to locate bugs. For example, Jones et al. [6] visualize
each statement’s participation in the execution of passing
and failing test cases. Such visualization helps developers
inspect a program and identify suspicious statements. Cleve
and Zeller [7] identified causes of failures by comparing
program states of failing and passing runs. However, these
approaches heavily rely on the availability and quality of
test suites. In addition, together with the above-mentioned
statistical debugging, all these approaches require success-
ful execution of the program. In particular, to isolate a
failure cause more effectively from passing and failing runs,
a larger number of executions and higher execution
similarities are required [8].

A program’s dynamic properties are also exploited to
locate bugs. In the work of Brun and Ernst [9], program
properties generated by dynamic program analysis are first
marked as fault-revealing or otherwise. These properties
are then fed into a machine learner that identifies program
properties with latent errors. The Chianti tool proposed by
Ren et al. [10] constructs dynamic call-graphs via program
test runs. The tool then characterizes a program change as a
set of atomic changes and associates each of them with its
corresponding call-graph portion. When a test fails after a
program change, Chianti can determine the particular part
of the change responsible for the test failure. Chianti is later
extended to various applications such as Crisp [11] and
JUnit/CIA tool [12], which similarly detect the failure-
inducing program changes.

Static analysis. While dynamic analysis is in general
expensive to apply, static analysis is capable of detecting
bugs by only examining program model or source code
directly, without any actual run of the program. Techniques
such as program slicing have been proposed to facilitate
debugging activities by isolating the program location that
is likely buggy [13], [14]. However, program slicing is

known for its high computation cost and low accuracy [15],
[16]. Recent studies have used symbolic execution to
explain failures and locate bugs. One of the well-known
examples is PSE, a postmortem symbolic evaluation
algorithm that helps developers diagnose software failures.
PSE requires minimal information about a failure, namely,
its type and location in the source code as inputs, and
reproduces a set of execution traces that show how the
program is driven to the given failure [17]. Specifically, PSE
starts with the value of interest at the identified failure point
and then applies a novel backward analysis to precisely
explore the program’s behavior. Experiment results show
the scalability and precision of PSE, as well as its usefulness
in diagnosing real case failures.

Mining software repositories. Several defect prediction
approaches explore the rich information that resides in
software repositories. These techniques typically use me-
trics such as code churn, past fixes, and change-proneness
to predict defects [18], [19], [20], [21], [22]. Recently, novel
prediction metrics such as interaction patterns of devel-
opers’ behaviors have been proposed [23].

Ying et al. proposed an approach to mining software co-
changes which is particularly close to our work. Their
approach applies the association rule mining algorithm to
find frequently cochanged files [24]. They used frequent
cochange patterns extracted from version control system
(VCS) and bug tracking system to predict possible should-
be-changed files when given a newly changed file. Another
similar study of mining cochanges is introduced by
Zimmermann et al., whose work also aimed at predicting
likely software cochanges using association rule mining on
VCSs [25]. In contrast to Ying’s work, they used a particular
association rule mining algorithm in which both support
and confidence were considered, which allowed a prob-
abilistic representation of the recommendation results. In
addition, Zimmermann’s tool, ROSE, not only suggested
possible cochange files but could also predict other finer-
grained cochange entities such as fields or functions.

Nevertheless, the cochange file recommendation techni-
ques require at least one change file be specified at the
beginning. In the context of fixing bugs, the developer
should at least know one buggy file before adopting any
file recommendation tools to identify other cochange files.
Similarly, most of the state-of-the-art bug localization
approaches described above implicitly assume that buggy
source files are known in the first place. However, locating
the first buggy file is not always an easy task. Our
approach described in Section 3 addresses this issue
directly, and therefore is complementary to these file
recommendation techniques.

Some of the above-discussed techniques can locate bugs
at method level or even at statement level. While our
current two-phase prediction model aims at locating bugs at
file level, it can be easily extended to achieve finer-grained
prediction. We discuss this in Section 8.

2.2 Information Retrieval (IR) and Concept Location

A bug report typically includes information such as the
bug’s severity, dependencies, textual description, and
discussion written in natural language, all of which
together record detailed activities along a bug’s life cycle.

1598 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 11, NOVEMBER 2013

Researchers have applied various information retrieval
approaches on bug reports to identify and locate bugs.
Some commonly adopted IR approaches include Latent
Semantic Indexing (LSI) [26], [27], [28], Latent Dirichlet
Allocation (LDA) [1], [29], Vector Space Model (VSM) [2],
[30], and their variations.

Poshyvanyk et al. combined LSI and Scenario-based
Probabilistic Ranking (SPR) to locate unwanted features
(i.e., bugs) [28]. Their approach located eight real bugs in
Eclipse and Mozilla. Nguyen et al. [1] proposed a technique
that recommends candidate files to fix based on topics of
bug reports and source code files extracted using LDA.

Zhou et al. [2] proposed a combined approach to locate
files that need to be fixed in response to a given bug report.
This approach basically leverages textual similarity be-
tween bug reports and source code. First, it computes the
textual similarity of source code files with a given report
and calculates the scores of the files based on the
computed similarity and the file length. In addition, it
also computes the similarity between previously submitted
bug reports and the given report and calculates another
score for the connected files of the similar reports. Then the
approach combines the two scores to recommend top
N files to fix for the given bug report. This approach
yields promising results—60 percent accuracy on Eclipse.
However, performance is comparable only to our one-
phase model on Mozilla subjects (Section 5.1). This implies
that our two-phase model could improve the performance
of this approach.

Other IR-based approaches have also been proposed. For
example, DebugAdvisor allows developers to search, using
a fat query that contains structured and unstructured data
describing the bug. It then recommends assignees, source
files, and functions related to the queried bugs [31].
Interactive approaches leverage users’ knowledge and
improve the localization results according to users’ feed-
back [30], [32]. A recent work by Rao and Kak [33]
presented a comparative study of five generic IR models
used in the context of bug localization.

This line of work is also closely related to concept
location, which aims at associating human conceptual
knowledge and their implementation counterparts of a
given program [34]. Concept location is later applied to
practical software development scenarios such as feature
location, bug localization, and traceability recovery. For
example, Gay et al. applied their concept location technique
in the context of bug localization, where a bug report was
used as query to locate the methods to be fixed. McMillan
et al. [35] proposed a finer-grained approach to function
search. This approach took functional descriptions (queries)
from a user and leveraged association models that
described relationships between functions to retrieve
relevant functions and their usage.

Although sharing the similar goal of locating bugs, we
propose a two-phase machine learning model to predict
files to fix. Our model does not involve user interaction and
does not require users to have sufficient knowledge of the
target programs to make appropriate queries. In addition,
our model has one crucial filtering step that eliminates
inadequate bug reports. Note that insufficient information

can result in inaccurate or even misleading recommenda-
tion, which is effectively avoided in our model.

2.3 Data Quality in SE Research

Advancements in Software Configuration Management
Systems (SCMs) encourage extensive usage of develop-
ment-related data in software engineering research.

However, only a small fraction of such studies explicitly
consider the data quality issue [36]. In early 1990s, Balzer
[37] proposed a “pollution marker” to tolerate incon-

sistency in software systems. Basically, the pollution
marker can uniquely identify the particular data that
violate the consistency criteria, allowing developers to

circumvent the inconsistency and continue development
[38]. The concept of this work is similar to ours since our
predication model also identifies deficient bug reports

and filters them out before further recommendation.
Recently, many researchers have recognized the critical

role of the dataset used in empirical SE studies. Specifically,
the quality and appropriateness of the dataset may

significantly impact an approach’s effectiveness, as well as
the generalizability of the research conclusion. Khoshgof-
taar and Seliya [39] stressed the need for assuring quality in

software measurement data through a case study on NASA
data sets. They pointed out possible reasons, such as
presence of noise, improper data collection, and faulty data

recording, that may affect the classification performance.
Aranda and Venolia [40] performed an extensive field study
of bugs’ life cycle in Microsoft. They found that electronic

repositories often hold incomplete or inaccurate data. In
addition, the dataset automatically extracted from the
repositories tends to miss personal factors and social

interactions during software development.
Several studies have proposed techniques to improve

the quality of datasets used in SE research. Mockus [41]

reviewed methods handling missing data and applied
them to a practical software engineering dataset. Liebchen
et al. compared and assessed three noise handling
methods—filtering, robust filtering, and polishing—in

empirical SE studies [42]. Kim et al. found that the defect
prediction performance decreases significantly when the
dataset contains 20-35 percent noise [43]. They proposed

an algorithm, Closest List Noise Identification (CLNI), to
detect and eliminate noise. Bird et al. [44] investigated the
analysis bias arising from the missing links between

changeset and bug entry. The ReLink algorithm proposed
by Wu et al. [45] recovers missing links between changes
and bugs. Specifically, ReLink automatically learns criteria

of features from explicit links and recovers the unknown
link if it satisfies the criteria.

Our work also directly addresses the data quality issue.

The first phase in our two-phase prediction model effec-
tively eliminates deficient bug reports, which might other-
wise mislead the later buggy-file recommendation. Unlike

the above-mentioned studies, our prediction model does
not require reliable linkage between bug reports and
changes. To the best of our knowledge, our two-phase

model is the first of its kind to consider the quality and
information sufficiency of bug reports.

KIM ET AL.: WHERE SHOULD WE FIX THIS BUG? A TWO-PHASE RECOMMENDATION MODEL 1599

3 OUR APPROACHES

We propose machine learning-based approaches to predict
potential fix locations (i.e., files to fix) for given bug
reports. Section 3.1 explains the feature extraction process.
Sections 3.2 and 3.3 provide detailed descriptions of the
one-phase and two-phase prediction models, respectively.

3.1 Feature Extraction

A bug report is the main source of information for
developers to understand a bug: The bug summary briefly
describes the bug while the initial description explains it in
detail, meta-data provides the bug’s basic information such
as version and platform, and comment threads record
discussions from bug reporters and developers.

Since our approach uses machine learning classification,
we transformed a bug report into a feature vector (in the
machine learning sense). We extracted feature values from
the summary, initial description, and metadata (version,
platform, OS, priority, severity, and reporter) of a bug
report. We used the bag of words approach [46] to extract
word tokens from the summary and initial description since
both are natural language text. Then, the word tokens are
stemmed into their ground form. Finally, stop words such as
“I,” “are,” “he,” and “she” were removed (for this process,
we used 429 stop words1). After these steps, the processed
word tokens are used as feature values.

We considered comments added by the same reporter
within 24 hours from the bug submission as part of the
initial descriptions because these comments are usually a
supplementary description of the bug.2 On the other hand,
we excluded information such as assignee, reviewer, and
additional comments (except the kind of comments
described above) in feature extraction because our goal
is to predict potential files to fix right after the bug report
is submitted.

Bug metadata is directly extracted as feature values
without any processing. For example, the platform informa-
tion of a bug is recorded as nominal values such as
“Windows” and “Mac.” This information does not need any
additional textual processing.

Finally, a bug report’s metadata values and word tokens
are incorporated into a feature vector. For example, the
feature vector for Mozilla bug report #203556 is encoded as:
(“client software,” “Firefox,” “Bookmarks & History,”
“x86,” . . . , 4, 0, 4, 1), where each field represents (product
classification, product, component, platform, . . . , # of

“bookmark,” # of “history,” # of “toolbar,” # of “hover”).
We used the number of occurrences of each word token
(i.e., term-frequency) as features. We built a corpus using
features extracted from all bug reports to train and test our
prediction models.

3.2 One-Phase Prediction Model

To predict files to fix, we first propose the One-phase
Prediction Model (Fig. 1). This model takes features extracted
from collected bug reports as training data. When a new
bug report is submitted, features are extracted from it and
given to the model, which then recommends files to fix for
the new bug report.

We built the prediction model using Naive Bayes [46],
[47], which is a simple probabilistic classification algorithm
based on Bayes’ theorems. Note that our approach is
independent of specific machine learning techniques. We
chose Naive Bayes because it is well suited to our problem:
A bug report could have multiple files to fix, which requires
the prediction model to be able to handle multiclass
classification problems [48]. In addition, the prediction
model should accept nominal values as features.

Once trained, the one-phase model predicts a set of
candidate files for a given bug report. The model further
computes each file’s probability of being a file to fix. Based
on this probability, the top k files are recommended to
developers as the prediction result.

3.3 Two-Phase Prediction Model

As Hooimeijer and Weimer [49] and Zimmermann et al. [50]
noticed, the quality of bug reports can vary considerably.
Some bug reports may not have enough information to
predict files to fix. Our evaluation of one-phase prediction
(Section 5) confirms this conjecture: Bug reports whose files
are not successfully predicted usually have insufficient
information (e.g., no initial description). In other words,
including uninformative bug reports might yield poor
prediction performance.

Fig. 2 shows an example of an uninformative bug report.
In this report, the submitter describes a problem faced when
using Firefox. However, this description is very general and
contains few informative keywords that indicate the
problematic modules. Therefore, it is not helpful for
developers to locate the files to fix. Similarly, our one-
phase prediction model does not perform well with such
uninformative bug reports.

Hence, it is desirable to filter out uninformative bug
reports before the actual prediction process. Based on this
observation, we propose the two-phase prediction model that

1600 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 11, NOVEMBER 2013

1. Adopted from http://www.lextek.com/manuals/onix/
stopwords1.html.

2. Please refer to Mozilla bug #264031 as an example. In this bug report,
the reporter pavel.penaz described a defect briefly first and added a
comment with more details just four minutes later.

Fig. 1. One-phase prediction model.
Fig. 2. An uninformative bug report. This is an excerpt from Mozilla Bug

#403040, written by the bug submitter. This description is not informative

and the bug reviewer indeed had to ask the submitter for further

elaboration on his browser’s history and bookmark settings.

has two classification phases: binary and multiclass
classification (Fig. 3). The model first filters out uninforma-
tive reports (Section 3.3.1) and then predicts files to fix
(Section 3.3.2).

3.3.1 Phase 1

Phase 1 filters out uninformative bug reports before
predicting files to fix. Its prediction model classifies a given
bug report as “predictable” or “deficient” (binary classifica-
tion), as shown in Fig. 3. Only bug reports classified as
“predictable” are taken up for the Phase 2 prediction.

The prediction model in Phase 1 leverages prediction
history. The training dataset of this model uses a set of bug
reports that have already been resolved. Let B ¼
fb1; b2; . . . ; bng be a set of n resolved bug reports chron-
ologically sorted by their filing date. V ðbiÞ is the ith bug
report’s feature vector, which is extracted as described in
Section 3.1. P ðbiÞ is the set of actual files changed to fix the
bug (i.e., the files in the bug’s patch), which can be obtained
as well from report bi. For each report, its label (“pre-
dictable” or “deficient”) is determined by the following
process: For an arbitrary report bj 2 B, a one-phase
prediction model Mj is trained on fðV ðb1Þ; P ðb1ÞÞ; ðV ðb2Þ;
P ðb2ÞÞ . . . ðV ðbj�1Þ; P ðbj�1ÞÞg to predict files to fix for bj. If
the prediction result hits any file in P ðbjÞ, bj is labeled as
“predictable”; otherwise, it is labeled as “deficient.” Now,
let LðbÞ be the label of report b. By applying the above
process to all reports in B� fb1g, we can obtain the training
dataset fðV ðb2Þ; Lðb2ÞÞ; ðV ðb3Þ; Lðb3ÞÞ; . . . ; ðV ðbnÞ; LðbnÞÞg for
the prediction model of Phase 1. Note that no training
dataset is built for b1 because there is no bug report before b1

to create ðV ðb1Þ; Lðb1ÞÞ.
When a new bug report is submitted, the prediction

model classifies it as either “predictable” or “deficient.” If
the report is classified as “predictable,” it is passed on to
Phase 2 prediction; otherwise, no further prediction is
conducted. In the latter case, developers may ask the report
submitter to give more information about the bug.

3.3.2 Phase 2

The Phase 2 model accepts “predictable” bug reports
obtained from Phase 1 as the input. It extracts features
from these “predictable” bug reports and is trained on
fðV ðb1Þ; P ðb1ÞÞ; ðV ðb2Þ; P ðb2ÞÞ . . . ðV ðbmÞ; P ðbmÞÞg, where m
is the number of “predictable” bug reports. The model
then performs multiclass classification to recommend files
to fix.

As a result, our two-phase model produces two different
outcomes. For “predictable” reports, the model predicts a
set of files to fix; each file is associated with a probability of
being the file to fix. After sorting, the top k files are
recommended to developers. For “deficient” reports, the
model simply produces an empty set because no prediction
is actually conducted.

4 EVALUATION SETUP

We experimentally evaluated our proposed approaches.
Specifically, our evaluation addresses the following re-
search questions:

. RQ1. What is the predictive power of the two-phase
model in recommending files to fix

. RQ2. How many bug reports are predictable after
Phase 1 prediction?

. RQ3. Which features are more indicative in fix
location prediction?

. RQ4. Can recommended files effectively help
developers?

In this section, we first present the selected subjects and
evaluation setup. We then introduce two prediction models,
Usual Suspects and BugScout, used for comparison, followed
by our evaluation measures.

4.1 Subjects

We used the “Firefox” and “Core” projects in the Mozilla
Software Foundation as the subjects of evaluation. We
selected these two projects because we could reliably collect
fixed files (oracle set) for the corresponding bug reports
(feature set). For some issue tracking systems of other
projects, we needed to use links between bug reports and
source code to identify fixed files, but they often have many
missing links which lead to noisy data [44], [45]. However,
Mozilla developers directly post the patch files in the bug
reporting system,3 which are then reviewed by core
developers. Only accepted patches are finally committed
to their version control system and all activities related to
decision making are recorded in bug reports. For this
reason, the oracle set (bug reports and corresponding files
in accepted patches) collected from Mozilla projects does
not suffer from noise due to missing links [44], [45], [51].

We collected bug reports and the corresponding fix files
from eight modules as shown in Table 1. Two modules
from the Firefox project, ff-bookmark and ff-general, have
1,437 and 720 bug reports, respectively. Both have more
than 4,600 features and approximately two patch files per
report on average. Six modules from the Core project, core-
js, core-dom, core-layout, core-style, core-xpcom, and core-xul,
have 573-1,906 bug reports. They have approximately 5,500-
13,500 features and four patch files per report on average.

The “# of features” column in Table 1 shows the total
number of features extracted from each module’s bug
reports. As described in Section 3.1, there are two main
sources of the features: a bug report’s textual information
(e.g., summary and initial description) and metadata. While
the number of features extracted from textual information

KIM ET AL.: WHERE SHOULD WE FIX THIS BUG? A TWO-PHASE RECOMMENDATION MODEL 1601

3. https://bugzilla.mozilla.org/.

Fig. 3. The two-phase prediction model. This model recommends

files to fix only when the given bug report is determined to have

sufficient information.

varies, all modules have the same number of metadata
features—the six features listed in Section 3.1. For example,
ff-bookmark has 7,585 features in total which contain
906 features from summary, 6,673 from initial description,
and six from metadata; core-js has 10,982 features in total
with 2,056 from summary, 8,920 from initial description,
and six from metadata.

4.2 Training and Test Sets

We divided bug reports into two sets: training and test
sets. Bug reports for each module were chronologically
sorted with respect to bug IDs. Then, the first 70 percent of
bug reports were used as a training set and the remaining
30 percent as a test set. For a fair comparison, we built
the prediction models of four different approaches (the
one-phase model in Section 3.2, the two-phase model in
Section 3.3, and the Usual Suspects and BugScout in
Section 4.3) by using the training set and then evaluated
them by the test set.

4.3 Models for Comparison

For a comparative study, we used two models: Usual
Suspects and BugScout.

Usual suspects. Unlike the one-phase and two-phase
prediction models that use nearly all information (i.e.,
metadata, summary, and initial description) from a given
bug report, the Usual Suspects model takes previously
fixed files and their occurrences as the only source of
information. The intuition is that previously fixed files are
likely to be fixed again soon [52]. In fact, this observation
has been widely used in the defect prediction literature. For
example, Khoshgoftaar et al. [53] classified a software
module as fault-prone if the previous debug code churn
(i.e., the number of lines of code added, changed, or
deleted due to bug fix) of the module exceeded a given
threshold. Hassan and Holt [54] used the number of
recently modified and fixed files to predict susceptible or
defect-prone subsystems.

We built the Usual Suspects model as follows: First, we
use a 70-30 percent chronicle split to obtain training and test

sets as described in Section 4.2. The model collects the top k
most frequently fixed files from the training set. Then, the
Usual Suspects model predicts the collected top-k files as fix
candidates for a new bug report. In fact, this simple
prediction model performs reasonably well, as shown in
Section 5.

BugScout [1]. This model is a state-of-the-art technique
that leverages bug-proneness and topic distribution of
source code files to predict fix location. When a new bug
report is submitted, BugScout first computes the cosine
similarity of topic distributions between the new report and
each source code file. It also computes the bug-proneness of
each source code file as the number of bugs found in its
history, which is identical to the Usual Suspects model.
Then, the similarity value of each source code file is
multiplied by its bug-proneness, which is now its defect-
proneness value with respect to the bug report. BugScout
then sorts the source code files based on their defect-
proneness values. Finally, the top-N files are recommended
for fixing the bug.

In our evaluation, the parameters of BugScout were set
as suggested in [1]: hyperparameters � and � are set to
0.01. The number of topics was 300. We trained the
prediction model of BugScout by using 70 percent of bug
reports and tested it using the remaining 30 percent of
reports. The bug reports were chronologically sorted, as
described in Section 4.2.

4.4 Evaluation Measures

This section describes the performance measures we use for
our evaluation:

. Likelihood measures the accuracy of prediction
results. This is an effective measure to evaluate
recommendation techniques [1], [25], [55]. We
consider the prediction results to be correct if at
least one of the recommended k files matches one of
the actual patch files for a given bug report [1]. If
none of the recommended files matches, the predic-
tion is incorrect. We denote the number of bug

1602 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 11, NOVEMBER 2013

TABLE 1
Dataset Used in Our Evaluation

“Period” represents the time period between submission of the first and the last bug report. The “# of total reports” column shows the total number of
bug reports with patches. Among these bug reports, the “# of reports with accepted patches” column represents how many of them have accepted
patches. “# of files” stands for the number of distinct files fixed during the period. “# of features” shows the total number of features extracted after
preprocessing. Three columns in “# of files/report” represent the average, standard deviation, and maximum number of files in a patch per report.

reports as NC if the corresponding prediction is
correct, NIC if prediction is incorrect. The following
formula computes the percentage of bug reports for
which the prediction is correct:

Likelihood ¼ NC

NC þNIC
: ð1Þ

. Precision characterizes the number of correctly
predicted files over the number of files recom-
mended by our approach. We denote the set of
actual files fixed for a bug report as FB and the set of
recommended files as FR:

Precision ¼ jFB \ FRjjFRj
: ð2Þ

. Recall characterizes the number of correctly pre-
dicted files over the number of actual fixed files:

Recall ¼ jFB \ FRjjFBj
: ð3Þ

. Average rank denotes the average rank of all correctly
predicted files. We denote the rank of a predicted file f
as Rf :

Avg: Rank ¼
P

f2FB\FR Rf

jFB \ FRj
: ð4Þ

. Mann-Whitney statistical test. In Section 4.3, we
introduced two models for comparison. To check
the significance of the performance differences
between the two-phase model and the two models,
we conducted the Mann-Whitney statistical test
[56] to verify whether the performance differences
are statistically significant with 95 percent con-
fidence [57].

We chose this nonparametric test method instead
of any parametric test method such as t-test because
the distribution of our evaluation results may not
be normal.

In addition, we used Feedback [25] to compute the ratio of
bug reports classified as predictable after Phase 1 prediction.
Let NP denote the number of predictable bug reports and ND

denote the number of deficient ones. Feedback is computed
as follows:

Feedback ¼ NP

NP þND
: ð5Þ

5 RESULTS

This section reports the evaluation results. Sections 5.1 and
5.2 report the prediction performance and compare the
results of four different models with their statistical
significance (RQ1). We discuss the feedback (RQ2) in
Section 5.3, and present the sensitivity analysis in Section 5.4
to compare the prediction power of individual features
(RQ3). Section 5.5 shows examples of usage to demonstrate

how our approach can improve developers’ bug-fixing
practice (RQ4).

5.1 Performance

We first address RQ1: What is the predictive power of the
two-phase model in recommending files to fix? We present
the likelihood, precision and recall values in Figs. 4, 5, and 6,
respectively. Since the model recommends the top-k files, the
performance depends on the value of k. The X-axis of the
figures represents the k value, which ranges from 1 to 10.

When recommending only the top one file (i.e., k ¼ 1),
the two-phase model’s likelihood ranges from 19 to
57 percent. The likelihood value grows as k increases.
When k ¼ 10, the two-phase model yields likelihood
between 52 and 88 percent. Suppose there are 10 bug
reports. In the best scenario, our two-phase prediction
model is able to successfully recommend at least one file to
fix for 6 to 9 out of 10 reports, which is very promising.

When k ¼ 1, the two-phase model’s precision ranges
from 6 to 47 percent, with average of 23 percent. The
precision ranges from 7 to 11 percent when k ¼ 10. These
values indicate that the two-phase model can make correct
prediction even with a small k.

The average recall of the two-phase model increases from
9 to 33 percent as k grows from 1 to 10. This indicates that
when recommending the top-10 files, our model can correctly
suggest, on average, 1=3 of files that need to be fixed for a
given bug. In addition, the two-phase model achieves a
60 percent recall value for ff-bookmark when k ¼ 10.

5.2 Comparison

As shown in Fig. 4, the two-phase model outperforms the
one-phase model in prediction likelihood. For example,
when recommending the top-10 files, the likelihood of the
two-phase model for eight modules ranges from 52 to
88 percent, with an average value of 70 percent. The one-
phase model, on the other hand, has an average likelihood
of only 44 percent when k ¼ 10, which is even less than the
lowest prediction likelihood of the two-phase model.

To counteract the problem that rare events are likely to
be observed in multiple comparisons, we used Bonferroni
correction [58] so that a p-value less than 0:05=4 ¼ 0:0125
indicates a significant difference between the corresponding
pair of models. As shown in Table 2, the two-phase model
significantly outperforms the one-phase model for half of
the modules.

The two-phase model also manifests higher precision and
recall than the one-phase model, as shown in Figs. 5 and 6.

The one-phase model, on the other hand, manifests
prediction performance comparable to the Usual Suspects
model—the last column of Table 2 shows that the p-values
between these two models are greater than 0.0125 for all

KIM ET AL.: WHERE SHOULD WE FIX THIS BUG? A TWO-PHASE RECOMMENDATION MODEL 1603

eight modules. BugScout also shows performance similar to

the Usual Suspects, as shown in Figs. 4, 5, and 6. One

possible reason is that BugScout leverages the defect-

proneness information to recommend files to fix, an idea

similar to the Usual Suspects model.

1604 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 11, NOVEMBER 2013

Fig. 4. Prediction likelihood for each module shown in Table 1. The Y -axis represents the likelihood values computed by (1). The X-axis represents

the k values described in Section 3. In the upper-left corner of each plot, the total number of bug reports in the test set, the number of predictable bug

reports, and feedback value computed by (5) are shown.

We also compared the average rank of correctly

predicted files for each model (4). As shown in Table 3,

the two-phase model has the highest average rank among

the four prediction models for six out of eight modules

(except for core-js and core-xul). This implies that compared

to the other three models, developers might have more

confidence in using the two-phase model because it ranks

correctly predicted files at a higher position, which could

potentially save their inspection time.

KIM ET AL.: WHERE SHOULD WE FIX THIS BUG? A TWO-PHASE RECOMMENDATION MODEL 1605

Fig. 5. Prediction precision for each module. The Y -axis represents the average precision of all bug reports computed by (2). The X-axis represents

the k values described in Section 3.

Overall, the two-phase prediction model can recom-
mend files to fix with high likelihood between 52 and
88 percent and with an average of 70 percent. In addition,
the two-phase model has the best performance among the
four prediction models: It yields higher prediction like-
lihood (as well as precision and recall) than the other three
models and the difference is statistically significant in most
cases. Furthermore, the two-phase model ranks correctly

predicted files at higher positions compared to the other

models, potentially reducing the time developers spend on

the recommended files.

1606 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 11, NOVEMBER 2013

Fig. 6. Prediction recall for each module. The Y -axis represents the average recall of all bug reports computed by (3). The X-axis represents

the k values.

5.3 Feedback

We measure feedback to address RQ2: How many bug
reports are predictable? As shown in Fig. 4, the feedback
value for the eight modules ranges from 18 to 78 percent,
with an average of 49 percent. This indicates that, on
average, nearly one-half of bug reports are classified as
predictable in Phase 1 of our two-phase prediction model.

5.4 Sensitivity Analysis

As described in Section 3.1, we extracted features from the

bug report summary, initial description, and metadata to

train our prediction models. To better understand which

feature or which combination of features is more informa-

tive for fix location prediction, we performed a sensitivity

analysis on different feature selections to address RQ3. We

only report results of the sensitivity analysis of the two-

phase model’s likelihood on the ff-bookmark module here

but we observed similar patterns for the other modules.
We tested four possible feature combinations: metadata

only, summary only, description only, and summary plus

description. Fig. 7 shows the likelihood of each selected

feature(s). The two-phase model does not perform so well

when trained on the metadata feature only. When we

switched to “summary only” and “description only,” the

prediction likelihood increased. The two-phase model

finally reached the best prediction performance when

trained on all textual messages (“summary + description”).
After comparing the prediction results of these four

feature selections, we concluded that textual messages in

bug reports are the most important source of information

for fix location prediction. However, metadata should not

be excluded from training features because when combin-

ing all three features together, the two-phase prediction

model achieves even better prediction performance (the

red “All” curve in Fig. 7, which is indeed the same as

reported in Fig. 4).
Note that even when trained only on metadata, the

two-phase model still outperforms the one-phase model,

which is trained on all three features (see ff-bookmark in

Fig. 4). This further illustrates the necessity of filtering out

deficient bug reports before the actual prediction.

5.5 Examples of Use

We now address RQ4: Can recommended files effectively

help developers? For this purpose, we introduce two cases

from ff-bookmark—bug #415757 and #415960—to demon-

strate the usefulness of our approach in practice.
To resolve bug #415757, a patch was submitted on

5 February 2008. This patch was reviewed and rejected

because it did not successfully resolve the bug. Thereafter,

the developer proposed three more patches, all of which

were rejected. The main reason was that a file was missing

in all the submitted patches. The developer finally realized

this and fixed the missing file, nsNavHistory.h, in the

final patch. This final patch, which was submitted two days

after the first submission, was finally accepted.
In the evaluation, our two-phase model correctly

recommended nsNavHistory.h as a candidate file to fix

for bug #415757. In particular, nsNavHistory.h ranks

KIM ET AL.: WHERE SHOULD WE FIX THIS BUG? A TWO-PHASE RECOMMENDATION MODEL 1607

TABLE 2
p-Values from the Mann-Whitney Test

Values lower than 0.0125 (shown in bold) indicate that the performance
difference between two models is statistically significant.

TABLE 3
The Average Rank of Correctly Predicted Files for Each Module

Numbers in this table are calculated by (4) when recommending the
top 10 files. We highlight the lowest number (i.e., highest rank)
across the four prediction models.

Fig. 7. Feature sensitivity analysis on ff-bookmark. When trained on

different feature selections, the likelihood of the two-phase prediction

model varies. Better performance implies relatively strong indicative

power of the corresponding feature(s).

fifth among the top-10 recommendations, encouraging
developers to pay more attention to this file.

The resolution of bug #415960, which experienced an
even larger number of patch rejections, further suggests that
figuring out the right files to fix is not a trivial task. Between
the third and fourth patches, the developer in charge
explained why he forgot to include a file in the patch:

...moving the last patch to toolkit led me to miss the changes to
editBookmarkOverlay.xul...

After the fifth patch submission, the reviewers noticed
that the patch submitter had chosen the wrong file to
capture a key stroke and suggested looking up another file
browser-places.js.

In the case of the above two missing files in resolving
bug #415960, the two-phase model did not recommend
editBookmarkOverlay.xul but it successfully pre-
dicted browser-places.js as the fourth candidate file
to fix. In addition, we noticed that after the first patch was
created on 5 February 2008, it took developers nearly one
month to figure out that the file browser-places.js

was actually missing.
If our two-phase prediction model was deployed in the

above cases, it would have recommended files to fix in
advance, saving developers’ efforts on finding the missing
files or reviewing incomplete patches. Moreover, the costly
bug fix delay of up to one month could have been avoided.

6 DISCUSSION

The Usual Suspects baseline. The performances of Usual
Suspects, the one-phase prediction model, and BugScout
[1] are not significantly different from each other for all
modules. In some cases, the Usual Suspects model shows
better performance (Fig. 4) even though it has a very simple
prediction model. This implies that previously fixed files are
more likely to be fixed again when a new bug is encountered
[52]. Thus, the Usual Suspects model can be a strong defect
predictor, comparable to machine learning-based predictors.

Feedback and likelihood. For modules core-style and core-js,
whose feedback is 74 and 78 percent, respectively, the
likelihood of the two-phase prediction model is not
significantly different from the one-phase model. The
reason is that when feedback gets closer to 1, nearly all
bug reports are classified as “predictable” and no report is
filtered out. In such cases, the two-phase prediction actually
behaves like the one-phase prediction.

Using stack traces in prediction. Recent observations
indicate that crash stack traces facilitate bug resolution
activities including fault localization [59], [60]. In particu-
lar, crash stack traces might help our fix location prediction
because they possibly contain files (represented as file
names in stack frames) that are buggy. However, our
investigation shows that, on average, only 0.73 percent of
bug reports in our subjects contain stack traces in the initial
description (Max.: 2.34 percent, Min.: 0.08 percent). Other
bug reports may contain stack traces in the comment

thread, which is not considered in our feature extraction
process.4 Since we do not have enough stack trace data in

the bug reports in our subjects, it is infeasible to confirm
whether stack traces contribute to our fix location predic-
tion and evaluate its significance at this point. This remains

as our future work.

7 THREATS TO VALIDITY

. Subjects are all open source projects. Since we only use
open source projects for evaluation, the results might
not be generalizable to closed-source projects.
Although recent open source projects have their own
quality assurance (QA) teams, the support may not be
complete compared to commercial projects. Hence,
some accepted patches might have missing files, which
may lead to deviations in the accuracy of our results.

. Projects examined might not be representative. Bug
reports of only one open source community, Mozilla,
are examined in this paper. Since we intentionally
chose this community from which we could extract
high-quality bug reports, the absolute prediction
results reported in this paper might not be general-
izable to other projects. However, the relative
improvement of the two-phase prediction over
one-phase prediction is less likely to be affected by
this threat.

. Our evaluation method can be biased. We split the
collected bug reports into two sets (70 percent for
training and 30 percent for testing) to evaluate our
approach. Different splits may yield different
accuracies due to concept drift [61]. In addition,
we measure the prediction accuracy using like-
lihood, which considers the prediction to be correct
if at least one of the recommended files matches the
actual patch file. Other types of measurements
might yield different interpretation of the predic-
tion results.

8 CONCLUSION

Si tacuisses, philosophus mansisses—“If you had been silent,

you would have remained a philosopher.” This adage,
attributed to the Latin philosopher Boethius of the late fifth
century, also applies to recommender systems. By staying

silent when it does not have enough confidence, our two-
phase model avoids misleading recommendations that

would otherwise destroy confidence in the prediction
model [62]. If our approach recommends a location to be
fixed, which happens for almost half of the bug reports,

70 percent of the recommendations point to correct files.
Since our approach only requires the initial bug report, it
can be applied as soon as a problem is reported, providing

tangible benefits for debugging.
Our future work will focus on the following topics:

. Fine-grained defect localization. Currently, our predic-
tion takes place only at the file level. However, in
certain cases, we may be able to predict classes,

1608 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 11, NOVEMBER 2013

4. Please refer to bug reports #242207 and #255027.

methods, and even statements to be fixed; in other
cases, we may only be able to predict the package,
instead of the file, in which the bug should be fixed.
We are currently working on prediction models in
which we can adapt prediction granularity while
keeping the confidence constant.

. Performance improvement. Although our two-phase
model outperforms the other models, the precision
and recall values for some modules (e.g., core-js and
core-dom) are low. We plan to apply advanced
techniques such as feature selection [63], [64] to
improve the precision and recall values.

. Bug triaging. The two-phase model potentially
reduces developers’ inspection efforts by suggesting
possible locations to fix. In addition to the debug-
ging task, our recommendation can also facilitate bug
triaging, a process of identifying the right devel-
oper(s) to address the bug [65]. Given the recom-
mended “suspicious” files for a bug, a project
manager could better decide who to assign the bug
to and which alternate developers the bug can be
tossed to [55], [65], [66].

ACKNOWLEDGMENTS

Rahul Premraj, Sascha Just, and Kim Herzig provided
helpful feedback on earlier revisions of this paper. Sunghun
Kim is the corresponding author for this paper.

REFERENCES

[1] A.T. Nguyen, T.T. Nguyen, J. Al-Kofahi, H.V. Nguyen, and T.
Nguyen, “A Topic-Based Approach for Narrowing the Search
Space of Buggy Files from a Bug Report,” Proc. IEEE/ACM
26th Int’l Conf. Automated Software Eng., pp. 263-272, Nov.
2011.

[2] J. Zhou, H. Zhang, and D. Lo, “Where Should the Bugs Be
Fixed?—More Accurate Information Retrieval-Based Bug Locali-
zation Based on Bug Reports,” Proc. 34th Int’l Conf. Software Eng.,
pp. 14-24, June 2012.

[3] C. Liu, X. Yan, L. Fei, J. Han, and S.P. Midkiff, “SOBER: Statistical
Model-Based Bug Localization,” Proc. 10th European Software Eng.
Conf. Held Jointly with 13th ACM SIGSOFT Int’l Symp. Foundations
of Software Eng., pp. 286-295, 2005.

[4] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, and M.I. Jordan,
“Scalable Statistical Bug Isolation,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 15-26, 2005.

[5] B. Liblit, A. Aiken, A.X. Zheng, and M.I. Jordan, “Bug
Isolation via Remote Program Sampling,” Proc. ACM SIGPLAN
Conf. Programming Language Design and Implementation, pp. 141-
154, 2003.

[6] J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of Test
Information to Assist Fault Localization,” Proc. 24th Int’l Conf.
Software Eng., pp. 467-477, 2002.

[7] H. Cleve and A. Zeller, “Locating Causes of Program Failures,”
Proc. 27th Int’l Conf. Software Eng., pp. 342-351, 2005.

[8] M. Burger and A. Zeller, “Minimizing Reproduction of Software
Failures,” Proc. Int’l Symp. Software Testing and Analysis, pp. 221-
231, 2011.

[9] Y. Brun and M.D. Ernst, “Finding Latent Code Errors via Machine
Learning over Program Executions,” Proc. 26th Int’l Conf. Software
Eng., pp. 480-490, 2004.

[10] X. Ren, B.G. Ryder, M. Stoerzer, and F. Tip, “Chianti: A Change
Impact Analysis Tool for Java Programs,” Proc. 27th Int’l Conf.
Software Eng., pp. 664-665, 2005.

[11] O.C. Chesley, X. Ren, B.G. Ryder, and F. Tip, “Crisp—A Fault
Localization Tool for Java Programs,” Proc. 29th Int’l Conf. Software
Eng., pp. 775-779, May 2007.

[12] M. Stoerzer, B.G. Ryder, X. Ren, and F. Tip, “Finding Failure-
Inducing Changes in Java Programs Using Change Classification,”

Proc. 14th ACM SIGSOFT Int’l Symp. Foundations of Software Eng.,
pp. 57-68, 2006.

[13] M. Weiser, “Program Slicing,” Proc. Fifth Int’l Conf. Software Eng.,
pp. 439-449, 1981.

[14] M. Weiser, “Programmers Use Slices When Debugging,” Comm.
ACM, vol. 25, no. 7, pp. 446-452, July 1982.

[15] B. Breech, M. Tegtmeyer, and L. Pollock, “Integrating Influence
Mechanisms into Impact Analysis for Increased Precision,” Proc.
22nd IEEE Int’l Conf. Software Maintenance, pp. 55-65, 2006.

[16] M. Acharya and B. Robinson, “Practical Change Impact Analysis
Based on Static Program Slicing for Industrial Software Systems,”
Proc. 33rd Int’l Conf. Software Eng., pp. 746-755, 2011.

[17] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang, “PSE:
Explaining Program Failures via Postmortem Static Analysis,”
Proc. 12th ACM SIGSOFT Int’l Symp. Foundations Software Eng.,
pp. 63-72, 2004.

[18] N. Ohlsson and H. Alberg, “Predicting Fault-Prone Software
Modules in Telephone Switches,” IEEE Trans. Software Eng.,
vol. 22, no. 12, pp. 886-894, Dec. 1996.

[19] S. Kim, J.E. James Whitehead, and Y. Zhang, “Classifying
Software Changes: Clean or Buggy?” IEEE Trans. Software Eng.,
vol. 34, no. 2, pp. 181-196, Mar./Apr. 2008.

[20] R. Moser, W. Pedrycz, and G. Succi, “A Comparative Analysis of
the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction,” Proc. 30th Int’l Conf. Software Eng., pp. 181-190,
2008.

[21] A.E. Hassan, “Predicting Faults Using the Complexity of Code
Changes,” Proc. 31st Int’l Conf. Software Eng., pp. 78-88, 2009.

[22] M. D’Ambros, M. Lanza, and R. Robbes, “An Extensive
Comparison of Bug Prediction Approaches,” Proc. IEEE Seventh
Working Conf. Mining Software Repositories, pp. 31-41, May 2010.

[23] T. Lee, J. Nam, D. Han, S. Kim, and H.P. In, “Micro Interaction
Metrics for Defect Prediction,” Proc. 19th ACM SIGSOFT Symp. and
13th European Conf. Foundations of Software Eng., pp. 311-321, 2011.

[24] A.T.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll,
“Predicting Source Code Changes by Mining Change History,”
IEEE Trans. Software Eng., vol. 30, no. 9, pp. 574-586, Sept. 2004.

[25] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” Proc. 26th Int’l
Conf. Software Eng., pp. 563-572, 2004.

[26] A. Marcus, A. Sergeyev, V. Rajlich, and J.I. Maletic, “An
Information Retrieval Approach to Concept Location in Source
Code,” Proc. 11th Working Conf. Reverse Eng., pp. 214-223, Nov.
2004.

[27] D. Poshyvanyk, A. Marcus, V. Rajlich, Y.-G. Gueheneuc, and G.
Antoniol, “Combining Probabilistic Ranking and Latent Semantic
Indexing for Feature Identification,” Proc. 14th IEEE Int’l Conf.
Program Comprehension, pp. 137-148, 2006.

[28] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V.
Rajlich, “Feature Location Using Probabilistic Ranking of Methods
Based on Execution Scenarios and Information Retrieval,” IEEE
Trans. Software Eng., vol. 33, no. 6, pp. 420-432, June 2007.

[29] S.K. Lukins, N.A. Kraft, and L.H. Etzkorn, “Bug Localization
Using Latent Dirichlet Allocation,” Information and Software
Technology, vol. 52, no. 9, pp. 972-990, Sept. 2010.

[30] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the Use of
Relevance Feedback in IR-Based Concept Location,” Proc. 25th
IEEE Int’l Conf. Software Maintenance, pp. 351-360, Sept. 2009.

[31] B. Ashok, J. Joy, H. Liang, S.K. Rajamani, G. Srinivasa, and V.
Vangala, “DebugAdvisor: A Recommender System for Debug-
ging,” Proc. Seventh Joint Meeting European Software Eng. Conf. and
ACM SIGSOFT Symp. Foundations of Software Eng., pp. 373-382,
2009.

[32] D. Shepherd, Z.P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker,
“Using Natural Language Program Analysis to Locate and
Understand Action-Oriented Concerns,” Proc. Sixth Int’l Conf.
Aspect-Oriented Software Development, pp. 212-224, 2007.

[33] S. Rao and A. Kak, “Retrieval from Software Libraries for Bug
Localization: A Comparative Study of Generic and Composite
Text Models,” Proc. Eighth Working Conf. Mining Software
Repositories, pp. 43-52, 2011.

[34] T.J. Biggerstaff, B.G. Mitbander, and D. Webster, “The Concept
Assignment Problem in Program Understanding,” Proc. 15th Int’l
Conf. Software Eng., pp. 482-498, 1993.

[35] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: Finding Relevant Functions and Their Usage,” Proc.
33rd Int’l Conf. Software Eng. pp. 111-120, 2011.

KIM ET AL.: WHERE SHOULD WE FIX THIS BUG? A TWO-PHASE RECOMMENDATION MODEL 1609

[36] G.A. Liebchen and M. Shepperd, “Data Sets and Data Quality in
Software Engineering,” Proc. Fourth Int’l Workshop Predictor Models
Software Eng., pp. 39-44, 2008.

[37] R. Balzer, “Tolerating Inconsistency,” Proc. 13th Int’l Conf. Software
Eng., pp. 158-165, May 1991.

[38] E. Kocaguneli, T. Menzies, A. Bener, and J. Keung, “Exploiting the
Essential Assumptions of Analogy-Based Effort Estimation,” IEEE
Trans. Software Eng., vol. 38, no. 2, pp. 425-438, Mar./Apr. 2012.

[39] T.M. Khoshgoftaar and N. Seliya, “The Necessity of Assuring
Quality in Software Measurement Data,” Proc. 10th Int’l Symp.
Software Metrics, pp. 119-130, 2004.

[40] J. Aranda and G. Venolia, “The Secret Life of Bugs: Going Past the
Errors and Omissions in Software Repositories,” Proc. 31st Int’l
Conf. Software Eng., pp. 298-308, 2009.

[41] A. Mockus, “Missing Data in Software Engineering,” Guide to
Advanced Empirical Software Engineering, F. Shull, J. Singer, and
D.I.K. Sjberg, eds., pp. 185-200, Springer, 2008.

[42] G. Liebchen, B. Twala, M. Shepperd, M. Cartwright, and M.
Stephens, “Filtering, Robust Filtering, Polishing: Techniques for
Addressing Quality in Software Data,” Proc. First Int’l Symp.
Empirical Software Eng. and Measurement, pp. 99-106, 2007.

[43] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with Noise in
Defect Prediction,” Proc. 33rd Int’l Conf. Software Eng., pp. 481-490,
2011.

[44] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and Balanced? Bias in Bug-Fix Data Sets,”
Proc. Seventh Joint Meeting European Software Eng. Conf. and ACM
SIGSOFT Symp. Foundations Software Eng., pp. 121-130, 2009.

[45] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recovering
Links between Bugs and Changes,” Proc. 19th ACM SIGSOFT
Symp. and 13th European Conf. Foundations of Software Eng., pp. 15-
25, 2011.

[46] D.D. Lewis, “Naive (Bayes) at Forty: The Independence Assump-
tion in Information Retrieval,” Proc. 10th European Conf. Machine
Learning, C. Nédellec and C. Rouveirol, eds., pp. 4-15, 1998.

[47] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2004.
[48] J.D.M. Rennie, “Improving Multi-Class Text Classification with

Naive Bayes,” master’s thesis, Massachusetts Inst. of Technology,
2001.

[49] P. Hooimeijer and W. Weimer, “Modeling Bug Report Quality,”
Proc. IEEE/ACM 22nd Int’l Conf. Automated Software Eng., pp. 34-43,
2007.

[50] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter,
and C. Weiss, “What Makes a Good Bug Report?” IEEE Trans.
Software Eng., vol. 36, no. 5, pp. 618-643, Sept./Oct. 2010.

[51] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein,
“The Missing Links: Bugs and Bug-Fix Commits,” Proc. 16th ACM
SIGSOFT Symp. Foundations of Software Eng., pp. 97-106, 2010.

[52] S. Kim, T. Zimmermann, E.J. Whitehead Jr., and A. Zeller,
“Predicting Faults from Cached History,” Proc. 29th Int’l Conf.
Software Eng., pp. 489-498, 2007.

[53] T.M. Khoshgoftaar, E.B. Allen, N. Goel, A. Nandi, and J.
McMullan, “Detection of Software Modules with High Debug
Code Churn in a Very Large Legacy System,” Proc. Seventh Int’l
Symp. Software Reliability Eng., pp. 364-371, 1996.

[54] A. Hassan and R. Holt, “The Top Ten List: Dynamic Fault
Prediction,” Proc. 21st IEEE Int’l Conf. Software Maintenance,
pp. 263-272, 2005.

[55] G. Jeong, S. Kim, and T. Zimmermann, “Improving Bug Triage
with Bug Tossing Graphs,” Proc. Seventh Joint Meeting European
Software Eng. Conf. and ACM SIGSOFT Symp. Foundations of
Software Eng., pp. 111-120, 2009.

[56] H.B. Mann, “On a Test of Whether One of Two Random Variables
Is Stochastically Larger than the Other,” The Annals of Math.
Statistics, vol. 18, no. 1, pp. 50-60, Mar. 1947.

[57] D.C. Montgomery and G.C. Runger, Applied Statistics and
Probability for Engineers. John Wiley & Sons, 1994.

[58] O.J. Dunn, “Multiple Comparisons among Means,” J. Am.
Statistical Assoc., vol. 56, no. 293, pp. 52-64, Mar. 1961.

[59] A. Schröter, N. Bettenburg, and R. Premraj, “Do Stack Traces Help
Developers Fix Bugs?” Proc. Seventh Working Conf. Mining Software
Repositories, pp. 118-121, 2010.

[60] H. Seo and S. Kim, “Predicting Recurring Crash Stacks,” Proc. 27th
IEEE/ACM Int’l Conf. Automated Software Eng., pp. 180-89, 2012.

[61] G. Widmer and M. Kubat, “Learning in the Presence of Concept
Drift and Hidden Contexts,” Machine Learning, vol. 23, pp. 69-101,
1996.

[62] L. Swartz, “Why People Hate the Paperclip: Labels, Appearance,
Behavior and Social Responses to User Interface Agents,” master’s
thesis, Stanford Univ., 2003.

[63] A. Miller, Subset Selection in Regression, second ed. Chapman and
Hall/CRC, Apr. 2002.

[64] S. Shivaji, E. Whitehead Jr., R. Akella, and S. Kim, “Reducing
Features to Improve Code Change Based Bug Prediction,” IEEE
Trans. Software Eng., vol. 39, no. 4, pp. 552-569, Apr. 2013.

[65] J. Anvik, L. Hiew, and G.C. Murphy, “Who Should Fix This Bug?”
Proc. 28th Int’l Conf. Software Eng., pp. 361-370, 2006.

[66] P.J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “‘Not
My Bug!’ and Other Reasons for Software Bug Report Reassign-
ments,” Proc. ACM Conf. Computer Supported Cooperative Work,
pp. 395-404, 2011.

Dongsun Kim received the BEng, MS, and PhD
degrees in computer science and engineering
from Sogang University, Seoul, Korea, in 2003,
2005, and 2010, respectively. He is currently a
postdoctoral fellow at the Hong Kong University
of Science and Technology. His research inter-
ests include mining software repositories, auto-
matic patch generation, and static analysis. He
is a member of the IEEE.

Yida Tao received the BSc degree in computer
science from Nanjing University and is working
toward the PhD degree in the Department of
Computer Science and Engineering at the Hong
Kong University of Science and Technology
(HKUST). Her research interests include soft-
ware evolution and program comprehension.
She is a student member of the IEEE.

Sunghun Kim received the PhD degree from
the Department of Computer Science, Univer-
sity of California, Santa Cruz, in 2006. He is an
assistant professor of computer science at the
Hong Kong University of Science and Technol-
ogy. He was a postdoctoral associate at the
Massachusetts Institute of Technology and a
member of the Program Analysis Group. He
was the chief technical officer (CTO) and led a
25-person team for six years at the Nara Vision

Co. Ltd., a leading Internet software company in Korea. His core
research area is software engineering, focusing on software evolution,
program analysis, and empirical studies. He is a member of the IEEE.

Andreas Zeller is a full professor for software
engineering at Saarland University in
Saarbrücken, Germany. His research con-
cerns the analysis of large software systems
and their development process; his students
are funded by companies like Google, Micro-
soft, or SAP. In 2010, he was inducted as a
fellow of the ACM for his contributions to
automated debugging and mining software
archives. In 2011, he received an ERC

Advanced Grant, Europe’s highest and most prestigious individual
research grant, for work on specification mining and test case
generation. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1610 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 11, NOVEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

