
Predicting Recurring Crash Stacks

Hyunmin Seo and Sunghun Kim

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology, Hong Kong, China

{hmseo, hunkim}@cse.ust.hk

ABSTRACT
Software crash is one of the most severe bug manifestations
and developers want to fix crash bugs quickly and efficiently.
The Crash Reporting System (CRS) is widely deployed for
this purpose. Even with the help of CRS, fixes are largely by
manual effort, which is error-prone and results in recurring
crashes even after the fixes. Our empirical study reveals that
48% of fixed crashes in Firefox CRS are recurring mostly due
to incomplete or missing fixes. It is desirable to automati-
cally check if a crash fix misses some reported crash traces
at the time of the first fix.

This paper proposes an automatic technique to predict
recurring crash traces. We first extract stack traces and
then compare them with bug fix locations to predict recur-
ring crash traces. Evaluation using the real Firefox crash
data shows that the approach yields reasonable accuracy in
prediction of recurring crashes. Had our technique been de-
ployed earlier, more than 2,225 crashes in Firefox 3.6 could
have been avoided.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids, tracing

General Terms
Management, Reliability, Verification

Keywords
Crash, crash reporting system, bug

1. INTRODUCTION
Software crash is one of the most obvious and severe bug

manifestations. Crashes immediately stop software execu-
tion and often cause data loss. If a crash happens in a criti-
cal part of the operating system kernel, the entire computer
may stop working and require rebooting. Researchers and
developers have put in significant efforts to fix crash bugs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3-7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$15.00.

quickly and efficiently. The Crash Reporting System (CRS)
is an outcome of efforts made in this context. Many CRSs
such as Windows Error Reporting [27], Mozilla Crash Re-
porting System [25] and Apple Crash Reporter [2] have been
widely deployed and are actively used in practice.

When a crash is detected on the client side, CRS generates
a crash report by collecting crash related data and sends it to
a server maintaining all crash reports. The report typically
includes crash point and stack traces [22]. Since often too
many crashes are reported [22, 23], similar crash traces are
grouped together and put into a crash bucket [12, 17]. Then,
developers focus on top crash buckets which contain the most
frequent crashes [15]. A bug report is filed for top crashes and
is linked to the corresponding crash bucket. Crash traces in
the same bucket are investigated to localize and fix the crash.

Even with the help of CRS, fixing crashes largely relies
on manual effort and this process is error prone. Gu et
al. found that bad fixes account for as much as 9% of all
bugs [14]. Yin et al. investigated post-release bug fixes
in three large operating systems and found that at least
14.8%∼24.4% of them were incomplete [28]. In addition, our
empirical study revealed that 47% of fixed crashes in Firefox
3.6 are recurring, and many of them are due to incomplete
or missing fixes.

Figure 1 shows an example of a recurring crash. Two
crash traces are collected from one crash bucket in Fire-
fox 3.6b1. A developer made a patch to fix this crash in
Firefox 3.6b2 by changing the code in function nsTextTo-

SubURI::UnEscapeAndConvert, shown in trace a. However,
the developer missed a crash bug in trace b. As a result, the
same crash recurred, following trace b. Unfortunately, this
crash became one of the top crashes in the official release
of Firefox 3.6. It was re-fixed in 3.6.4 by changing function
nsCacheEntryDescriptor::GetDeviceID in trace b. After
the second fix, the crash disappeared.

To avoid recurring crashes, it is desirable to automatically
check if all reported crash traces in a bucket are covered by a
crash fix. If any crash traces are not covered by the proposed
fix, the crash may recur due to the missed traces as shown
in Figure 1.

In this paper, we propose a technique to predict recurring
crash traces. From crash traces in a crash bucket and a
proposed fix for the bucket, we automatically check if the fix
covers all crash traces in the bucket. We first extract unique
stack traces from the bucket and expand the traces based on
program call relations. Then, we compare the original and
expanded traces with crash fix locations to identify missing
traces.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’12, September 3–7, 2012, Essen, Germany
Copyright 2012 ACM 978-1-4503-1204-2/12/09 ...$15.00

180

XPCWrappedNative	
::CallMethod	

NS_InvokeByIndex_P	

nsTextToSubURI::	
UnEscapeAndConvert	

NS_strdup	

strlen	

nsCacheEntryDescriptor	
::GetDeviceID	

crash point

trace a trace b

First Fix (#522931)
in 3.6b2

Second Fix (#540566)
in 3.6.4

✓ ✓

Figure 1: Two crash traces from the the same
crash point. A developer fixed this crash (Bug
report #522931) by modifying function nsTextToSub-
URI::UnEscapeAndConvert shown in trace a. Our approach
correctly predicted that trace b will reappear. Actually,
this crash trace became one of the top crashes in Fire-
fox 3.6.3. The developer filed a new bug report (Bug
report #540566) and fixed function nsCacheEntryDescrip-
tor::GetDeviceID. Finally, the crash disappeared in Fire-
fox 3.6.4.

We evaluate our approach by using actual Firefox crash
data; crash fixes and corresponding crash reports in 19 re-
leases of Firefox 3.6. We apply our technique to each crash
bucket and predict if any traces will recur. The evaluation
is based on the actual recurring crash data of Firefox. Our
technique predicts recurring stack traces with reasonable ac-
curacy, 0.57 precision and 0.49 recall. Had the proposed
technique been deployed in advance, it could have prevented
occurrence of more than 2,225 crashes.

We asked for feedback from Firefox developers who were
involved in fixing the crashes used in our experiment. In
general, they considered our approach interesting and useful
for fixing crash bugs.

Overall, our paper makes the following contributions:

• Empirical study on recurring crashes: We present
an empirical study on crashes recurring due to incom-
plete and/or missing fixes. Our study reveals that 48%
of fixed crashes are recurring and are non-neglectable –
they become top crashes in subsequent releases.

• An automatic technique to predict recurring crash
traces: For a given crash fix, our technique can auto-
matically predict if any crash traces in the crash bucket
will recur.

• Evaluation on actual crash fixes in Firefox 3.6:
We present experimental evaluation of our approach and
Firefox developer’s feedback.

The remainder of the paper is organized as follows. We
present empirical study results and statistics for recurring
crashes in Section 2. Section 3 introduces our approach.
Section 4 presents our experimental setup. After reporting
our experimental results in Section 5, we discuss limitations
of our approach in Section 6. Related work is surveyed in
Section 7 and the paper is concluded in Section 8 with di-
rections for future research.

2. RECURRING CRASHES
This section reports the results of our empirical study on

recurring crashes. We first introduce CRS and explain CRS

BUG
#50001

Crash Bucket

Stack Traces

Crash Point Bug Report

Crash Fix

Figure 2: A crash bucket and a linked bug report

related terminologies. We use Mozilla’s crash reporting sys-
tem (MCRS) [6, 22, 25] as a typical CRS example. Then we
present statistics of recurring crashes and discuss the reasons
for recurring crashes.

2.1 Mozilla Crash Reporting System
When a crash occurs on the client side, the CRS generates

a crash report and sends it to a server. For example, MCRS
generates a crash report including crash point, crash time,
product version, operating system and its version, hardware
information, optional user comments and all thread stack
traces from the crash. The crash report is sent to the MCRS
server.

On the server side, crash reports having similar crashes
are grouped together and put in the same crash bucket (Fig-
ure 2). MCRS’s grouping is based on the crash point. That
is, crash reports having the same crash point are grouped
together and put into the same crash bucket. Then, devel-
opers investigate the crash buckets to fix them. Developers
usually focus on top crash buckets first [12, 15]. Each crash
bucket is linked to a bug report to monitor and track the
progress of crash fixes (Figure 2). Table 1 explains the ter-
minologies used in this paper.

2.2 Many Recurring Crashes
To observe crashes that recur after fixes, we explored the

crash reporting system and the bug reporting system [8]
of Mozilla Firefox described in Section 2.1. For a two-

Table 1: Terminologies used in the paper

Name Explanation

crash report When a crash occurs on the client side, a
crash report will be generated and sent to
a CRS server. A crash report includes crash
related information such as stack traces and
a crash point.

crash point The crashed location. It consists of file name,
function name, and line number.

stack traces A list of stack frames captured at the crash
moment. Each stack frame corresponds to
information of a function including the func-
tion name, source file name, and line num-
ber. A stack trace shows the function call
sequence at the moment of crash.

crash bucket A group of crash traces. Similar traces are
put in the same bucket. Mozilla crash traces
are grouped according to their crash point.

bug report Bug reports fixing crash bugs are linked to
the crash buckets. Developers communicate
via comments in bug reports. The status of
a fix can be checked via the comments and
the history of bug report resolutions.

crash fix When a bug is fixed, a patch file is usually
attached to the bug report. Once reviewers
accept the patch, it is reflected to the source
code, and the next release contains the patch.

181

Table 2: Number of crash reports in three different ver-
sions for three crash fixes. Gray color cells represent bug
fixed versions.

Bug Id Crash Point Ver 1 Ver 2 Ver 3

538722
nsHtml5ElementName:: 3.6.8 3.6.9 3.6.10

initializeStatics 677 0 0

554544 nsTextFrame::Reflow
3.6.6 3.6.7 3.6.8
773 186 497

528311
nsXULTreeAccessible:: 3.6b3 3.6b4 3.6b5

GetTreeItemAccessible 70 168 0

week period in March 2011, we identified crash reports and
crash buckets from nineteen versions of Firefox 3.6, includ-
ing five beta versions. Then, from the bug reporting system,
we identified the corresponding bug reports linked to these
crash buckets. Among the identified bug reports, we used
only the reports in FIXED status for our study. In total, we
collected 70 bug reports. These reports were corresponding
to bugs in 79 crash buckets that had been fixed1.

Then, we checked whether crashes in the crash buckets
had disappeared after the fixes. For 79 crashes, we identified
the number of crashes reported in each version. We also
identified the version where the crash was fixed. By looking
at the number of crash reports in different versions before
and after the fixes, we manually checked if the crashes had
disappeared.

Table 2 lists three example cases. The first column shows
bug report IDs and the second column shows crash points.
The next columns show the number of crash reports at dif-
ferent versions. Gray color cells represent the version where
the crashes were fixed.

Bug report #538722 fixed a crash, nsHtml5ElementName-
::initializeStatics. There were 677 crash reports in ver-
sion 3.6.8. After the fix was made in 3.6.9, the crash had
disappeared completely. However, Bug #554544 is an ex-
ample of an incomplete fix. Even though a fix was applied
to 3.6.7, 186 and 497 crashes were reported in 3.6.7 and
3.6.8, respectively. Bug #528311 is also an incomplete fix.
Developers fixed the crash twice after realizing it had not
disappeared after the first fix in 3.6b4. After the second fix
in 3.6b5, the crash disappeared.

Surprisingly, we found that almost one half (38 out of 79)
of fixed crashes were recurring after their corresponding first
crash fixes (Table 3).

Table 3: Recurring crashes among fixed ones

Name Value

of fixed crash point 79
of recurring crash point 38 (48.1%)

2.3 Reasons for Recurring Crashes
This section reports the outcome of further investigation

of potential reasons of recurring crashes.
Crash reports in the same bucket have the same crash

point but their detailed stack frames may differ. For exam-
ple, Figure 1 shows two different stack traces in the same
crash bucket. The functions at the third stack frame are
different.

We sub-grouped crash reports in the same bucket accord-
ing to their respective crash stack traces. Then, we counted
the number of crash reports in each sub-group. Figure 3(a) is

1Some bug reports fix more than one crash bucket.

0
5

10
15
20
25
30
35

 Group #1

 Group #2

 Group #3

 Group #4

 Group #5

of

 C
ra

sh
 R

ep
or

ts

Trace Sub-Groups
(a) Before fix

0
25
50
75

100
125
150
175

 Group #1

 Group #2

 Group #3

 Group #4

 Group #5

of

 C
ra

sh
 R

ep
or

ts

Trace Sub-Groups
(b) After fix

Figure 3: Number of crash reports in 5 trace sub-groups
before and after a fix (Bug Fix #528311). The fix missed
sub-group #2.

an example of crash nsXULTreeAccessible::GetTreeItem-

Accessible. It shows the number of crash reports for five
different sub-groups in the same crash bucket in 3.6b3, be-
fore fix #528311 is released. We excluded three sub-groups
having only one crash report.

We counted the number of crash reports after a fix in
3.6b4 in each sub-group in Figure 3(a) to check if they had
disappeared. Figure 3(b) shows the result. Interestingly,
all other sub-groups have disappeared but crashes in sub-
group #2 recurred. In fact, crashes in sub-group #2 account
for 98% (164/168) of all crash reports in the corresponding
bucket in Firefox 3.6b4.

When developers fix a crash bucket, sometimes the fix
misses certain crash traces in the bucket. As a result of
such incomplete fixes, some of the crash traces in the fixed
crash bucket may recur, as shown in Figure 3(b). This is
one of the main reasons of recurring crashes.

Bug report #528311 confirms that the first fix was in-
deed incomplete. A developer modified function nsXULTree-

Accessible::GetChildAt in the first fix. All stack traces
which include this function disappeared, while traces not
including this function recurred in the next release. An-
other developer mentioned in the bug report that the crash
had not disappeared in 3.6b4, and the first developer fixed
a function in the recurring stack trace. After the second fix,
the crash disappeared.

With thousands of crash reports in a bucket, it is easy
to miss some and end up with incomplete fixes, as shown
in Figure 3(b). A comment in another bug report #523528
clearly shows another example of a crash recurring due to an
incomplete fix. After observing that crash imgFrame::Draw

is recurring after the first fix, the developer re-fixed it and
left a comment:

“I don’t know how this bit (crash trace) got lost
from the patch I ended up checking in, but it’s
pretty essential. . . ”

To check if these missing stack traces can be recognized by
developers immediately, we measured the time lag between
the first incomplete fixes and the corresponding follow-up
fixes. Unfortunately, we found the average time was 23 days.
This indicates that these missing stack traces are not some-
thing developers catch immediately after the first incomplete
fixes. Thus, this issue is non-neglectable.

To assist developers and prevent such incomplete crash
fixes, we propose an automatic technique to predict recur-
ring crash traces.

182

Sub-grouping

Identifying & Verifying
 Fix Locations

<foo, bar>
<..., ...>

Covered Stack Traces

Missing Stack Traces

Stack Expansion
& Classification

BUG
#50001

BUG
#50001

Extracting Call Relations

Figure 4: Overview of our approach.

3. APPROACH
Since developers may miss some stack traces in the fixes,

our approach tries to identify them when a fix is made, to
prevent potential recurring crashes. We present the overview
of our approach first, and explain each component in detail.

3.1 Overview
Figure 4 shows the overview of our approach. First, crash

traces in the same crash bucket are sub-grouped according
to their traces. From a given crash fix, the fix locations
are identified. Then, we compare sub-grouped crash traces
with bug fix locations. During this comparison, traces are
expanded using their call relations acquired from static anal-
ysis of source code. If we find crash fix locations in original
or expanded stack traces, we classify these traces as covered
by the fix. If we cannot find fix locations in original or ex-
panded stack traces, they are classified as missing. Missing
crash traces are predicted to recur, which requires develop-
ers’ attention.

3.2 Grouping Crash Traces
The example cases in Figure 1 and Figure 3 show that de-

velopers miss some stack traces in the same crash bucket. To
find such traces, we sub-group crash traces in a crash bucket.
Two traces are grouped together when all stack frames of the
traces are matched. We consider function name, source file,
and line number of each frame for matching. This matching
is quite strict, but other heuristics [7, 12, 20] for grouping
crash traces can be applied in this process.

Firefox is a multi-threaded program having separate stack
traces for each thread. We consider only the thread contain-
ing the crash point and use the stack trace of that thread
for sub-grouping.

After the sub-grouping, we check if a fix for the bucket
covers all sub-groups in the bucket.

3.3 Identifying Crash Fixes and Locations
We use bug fix locations to check if there are any missing

traces in the crash bucket. Fix locations can be extracted
from patch files attached to bug reports, or developers can
specify them.

We use the links between crash buckets and bug reports
to identify the corresponding crash fixes. As explained in
Section 2.1, each crash bucket has links to the corresponding
bug reports.

Fix location

Hidden
function calls

crash point

✓

B

C

D

E
(a) Original Stack (b) Expanded Stack

F

G H I

J

A

✓
Fix location

L-1 L-2 L-3

Figure 5: Two crash stacks with bug fix locations. Each
circle is a function corresponding to a stack frame. The
crash point is at the bottom. Stack (a) shows an unex-
panded stack trace. Since bug fix location is one of the
stack functions, the trace is classified as covered. Stack
(b) shows Level 1, 2 and 3 stack expansions from func-
tion A. If F is not included in the stack after expansion,
the stack is classified as missing.

From the linked bug reports we extract patch files at-
tached to the bug reports. We verify whether the fix code
in the patch files had actually been released. We down-
loaded the source code of Firefox release versions and man-
ually compared them with code in patch files to check if the
changed code was really included in the releases.

After identifying and verifying fixes linked to crash buck-
ets, we extract fix locations in functional levels. Patch files
include the changed code with file names and line numbers.
By looking at the source code corresponding to file names
and line numbers, we acquire the function names.

3.4 Predicting Missing Traces
Finally, we compare each sub-group in a bucket described

in Section 3.2 with fix locations identified in Section 3.3.
Figure 5 sketches the comparison algorithm. Figure 5(a)
shows an original stack trace with explicit call sequences.
Each circle is a function corresponding to a stack frame and
the arrows represent call sequences shown in the stack trace.
The bug fix location is marked

√
. The crash point is drawn

at the bottom.
Since the fix location is in the stack trace in Figure 5(a)

(the fix modifies a function in the stack trace), we assume
the fix covers the stack trace, and classify it as covered.

However, it is not always the case that fix locations are
in original stack traces. A stack trace is not a complete ex-
ecution trace; it only shows function call sequences at the
moment of crash. Functions once called and successfully re-
turned are not shown in the stack trace. These functions
may include crash bugs and fixes may be located in these
functions. To handle this case, we expand stack traces ac-
cording to call relations and control flow graphs (CFG).

We acquired call relations and CFG from Firefox source
code. Firefox supports multiple platforms and uses different
files and implementations, depending on the target platform.
To acquire call relations, we built Firefox on the Windows
platform and identified the files and declaration directives.
Then, we used Understand [26] to get call relations with
CFG. We also identified class hierarchy information using
Understand to resolve virtual function calls.

From the CFG, we perform path analysis to recover hid-
den function calls. For example, Figure 6 shows the CFG of

183

Entry	

Exit	

if	

Y	 ()	
G	 ()	
B	 ()	
X	 ()	

Path	 1	 Path	 2	
Block1	 Block2	

Figure 6: The CFG of function A

function A in Figure 5(b). From the CFG and stack trace,
we know that Path2 of the if branch is taken because the
next function in the trace is B, and B is inside Block2. Then,
Y must not have been called. Also, we know G must have
been called and returned since it is located before calling B.
On the other hand, we know X has not been called since the
stack trace shows the execution has not returned from B.

Then we expand the stack by including G since we know
G was called and returned. Figure 5(b) shows the expanded
trace. We call this Level-1 expansion. In the same manner,
we can expand the stack further by considering call relations
from the newly added function G. In this example, G calls
H, so H is included in the expanded stack in Level-2 ex-
pansion. The figure shows that I and J can be included in
Level-3 expansion. Note that Figure 5(b) only shows stack
expansion from function A. Other functions are expanded
simultaneously in our approach.

In Figure 5(b), the fix location, function F, locates outside
the original stack trace. We check if F is included in the
expanded stack trace. If it does, we classify this stack trace
as covered. In this example, F is not located in the expanded
stack trace, so this trace is not covered.

It is possible that our approach can not find fix locations
from any of the original and expanded stack traces in a crash
bucket. For example, a crash fix can be related to configu-
ration files or meta files rather than fixing problems in func-
tions. In such cases, we do not have any clue to distinguish
missing traces from covered traces. We do not predict stack
traces in such crash buckets.

Algorithm 1 describes the missing trace prediction ap-
proach formally.

Given a set of stack traces S from a crash bucket, a set
of pairs of function names R for call information, and bug
fix functions fix, the algorithm classifies S into Cover and
Miss. From Line 6 to 8, we expand each stack trace for the
given Level. Expanded traces are compared with bug fix
locations at Line 10. Each trace is classified into Cover if
fix locations are found, otherwise classified into Miss. Note
that ExpandStack function in the algorithm is simplified.

For the following reasons, irrelevant functions may be in-
cluded during the current stack expansion process, and affect
prediction accuracy.

Branches: In the actual program execution, only one
path of a branch is taken. However, sometimes it is not
obvious to figure out which path is taken statically. We use
a conservative approach by considering all possible execution
paths.

Virtual functions: Virtual functions in C++ are dy-
namically dispatched. The actual function called from a
virtual function call site is determined dynamically, based
on the type of the object in run-time. We use class hierar-
chy analysis [4] to statically resolve virtual function calls.

Algorithm 1: Predicting Missing Traces

Input:
S : A set of stack traces for a crash bucket
R : A set of function call information
fix : Changed functions in the bug fix
Level : Expansion level

Output:
Cover : Covered stack traces
Miss : Missing stack traces

1 Cover ←− ∅;
2 Miss←− ∅;
3 foreach s ∈ S do
4 l←− 0;
5 es←− s;
6 while l < Level do
7 es←− es ∪ ExpandStack(es);
8 increase l by 1;
9 end

10 if es ∩ fix 6= ∅ then
11 add s to Cover;
12 else
13 add s to Miss;
14 end

15 end

16 Function ExpandStack(s)
17 es←− ∅;
18 foreach f ∈ s do
19 if <f , f ′> ∈ R then
20 add f ′ to es;
21 end

22 end
23 return es;

Leveraging more precise stack expansion techniques such
as [18] and [19], including data-flow analysis and alias anal-
ysis is our future work.

Our prediction results may depend on the expansion level.
If stack traces are not expanded enough, we may not find
bug fix locations. Too much expansion introduces irrelevant
functions and makes our predictions inaccurate. We present
and discuss the effect of different expansion levels on predic-
tion results in Section 5.

4. EXPERIMENTAL SETUP
This section presents our experimental setup including re-

search questions, subjects, and evaluation measures.

4.1 Research Questions
We design our experiments to address the following re-

search questions:

• RQ1. How accurately can our approach predict
recurring crash traces? For each crash trace and
given fix, we predict whether the trace may recur or not.
We compare our prediction results with actual recurring
crash traces in the Mozilla Crash Reporting System. To
measure the accuracy of our prediction, we calculate pre-
cision, recall, and F-measure.

• RQ2. How can this prediction help developers?
Our approach identifies missing crash traces for a given
fix. We want to evaluate if this information could be
helpful for developers to catch and fix missing crash traces.
We present case studies and developers’ feedback for this
evaluation.

184

Table 4: Characteristics of our subject

Name Description

Subject 19 releases of Firefox 3.6
Release Date Oct. 2009 ∼ Mar. 2011

Programming Language C / C++
LOC 3.2M ∼ 4.4M

4.2 Subjects
We chose crash fixes in Firefox 3.6 on the Microsoft Win-

dows platform as our experiment subject for two reasons.
Firstly, its crash information, including a large number of
crash reports and crash bug fixes, is publicly available. Sec-
ondly, Firefox 3.6 has five beta releases and several minor re-
leases. Minor releases usually contain security updates and
bug fixes rather than major updates to add new features.
When software has major changes, it is not clear if recur-
ring crashes are due to incomplete fixes or bugs newly intro-
duced by the major changes. By choosing minor releases, we
could clearly observe and evaluate recurring crashes caused
by incomplete crash fixes.

Table 4 shows our subjects in detail. We used 19 versions
of Firefox 3.6 which were released between October 2009 and
March 2011. Firefox is written in C and C++ and has 3M
∼ 4M LOC.

Table 5 shows the number of crash buckets and stack
traces used in our evaluation. From 38 crash buckets identi-
fied in Section 2, we used 33 buckets in the Microsoft Win-
dows platform in the experiment. We excluded five crash
buckets in other operating systems since we had acquired
call relations and CFGs for Firefox compiled in the Win-
dows platform.

For the 33 crash buckets, we collected crash reports from
the Firefox version right before the corresponding crashes
were fixed. When a crash bucket included too many crash
reports, we randomly chose 1,000 reports. We identified
1,159 unique stack traces (sub-group) out of 19,438 crash
reports we collected.

To evaluate our prediction results by checking which sub-
group traces were recurring, we collected crash reports in
the next releases, after the fixes had been applied. This
recurring crash data is used as an oracle set to evaluate our
prediction results. From the 1,159 traces, we identified 354
traces that had actually recurred.

Table 5: The number of crash buckets and stack traces
used in the experiment.

Name Value

of crash buckets 33
of recurring stack traces (sub-groups) 354

of total stack traces (sub-groups) 1159

4.3 Prediction Accuracy Measures
We classify each stack trace as missing or covered and

predict missing traces to recur and covered traces to disap-
pear. Our prediction results can have four outcomes: (1)
predicting a recurring stack as recurring (r→r); (2) predict-
ing a recurring stack as to disappear (r→d); (3) predict-
ing a disappeared stack as recurring (d→r); (4) predicting
a disappeared stack as to disappear (d→d). We calculate
commonly used performance measures [1, 16, 21], including
precision, recall and F-measure from the above outcomes to
evaluate the accuracy of our approach.

• Precision: number of stack traces correctly classified
as recurring (Nr→r) over the number of all stack traces
classified as recurring.

Precision P (r) =
Nr→r

Nr→r + Nd→r
(1)

• Recall: number of stack traces correctly classified as re-
curring (Nr→r) over the total number of actual recurring
stack traces.

Recall R(r) =
Nr→r

Nr→r + Nr→d
(2)

• F-measure: a composite measure of precision P (r) and
recall R(r) for recurring stack traces.

F-measure F (r) =
2 ∗ P (r) ∗R(r)

P (r) + R(r)
(3)

In addition, we calculate feedback – percentage of crash
buckets that our approach makes predictions about, among
all crash buckets used in the experiment. As discussed in
Section 3.4, when our approach can not identify actual bug
fix locations in any of the expanded stacks from a crash
bucket, we do not make a prediction for that bucket.

• Feedback: the number of crash buckets for which we
make predictions over the number of total crash buckets
used in the experiment.

Feedback =
of predicted crash buckets

of total crash buckets
(4)

5. RESULTS
In this section, we present the experimental results by

addressing the research questions.

5.1 Prediction Performance
To address RQ1 in Section 4.1, we present prediction ac-

curacy in terms of precision, recall, F-measure and feed-
back. We applied our approach to stack traces described
in Section 3.2 and predicted traces likely to result in recur-
ring crashes. Predicting recurring crashes for 1,159 traces
took less than 20 minutes at each expansion level. All ex-
periments were conducted in a machine with Core 2 Duo
2.66GHz CPU and 8GB RAM.

Table 6 shows our prediction results when the expansion
level is 4. Overall, the prediction accuracy is reasonable:
precision and recall are 0.57 and 0.49, respectively, and F-
measure is 0.53.

Table 6: Prediction results when the expansion level is 4

Name Value

Precision 0.57
Recall 0.49

F-measure 0.53
Feedback 0.88

Precision shows the percentage of recurring stack traces
correctly predicted by our approach. At L-4 expansion, we
predicted 292 stack traces as recurring traces. Among them,
167 are actually recurring traces (precision = 0.57). In our
dataset, percentage of recurring stack traces among all stack
traces is 31% (354/1159). So the random guesser can only
achieve 0.31 precision. Our precision is much higher than
that.

185

The recall value represents the ratio of identified recur-
ring traces among all actual recurring traces. Our approach
found almost 50% of all recurring stack traces.

The feedback is 0.88. We did not make any prediction for
99 traces in four crash buckets since we could not find bug
fix locations in any of the expanded stack traces from these
buckets, as discussed in Section 3.4.

We hypothetically calculated how many recurring crashes
could have been avoided if missing stack traces were detected
by our technique and fixed by the developers in the first
place. We counted the number of recurring crash reports af-
ter fixes for correctly predicted stack traces in L-4 expansion.
By examining 292 stack traces, more than 2,225 recurring
crash reports in our subject could have been avoided. Note
that our dataset only covers crash reports over a period of
two weeks. The total number of crashes that could have
been avoided can be much higher over a longer period.

As we explained in Section 3.4, our prediction accuracy
may depend on the expansion level. To observe accuracy at
different expansion levels, we measured precision, recall and
feedback with various expansion levels: 0, 1, 2, 3, 4, 5, 7, 10
and ∞. In L-0 expansion, unexpanded original stack traces
were used. L-∞ expansion means stack traces are expanded
until no more expansion is possible.

Figure 7 shows prediction accuracy at different expan-
sion levels. The y-axis shows values of precision, recall, F-
measure and feedback. The maximum value for precision
and recall is 0.67 and 0.78, respectively. F-measure values
are between 0.63 and 0.48.

After expanding the stack for more than two levels, the
feedback ratio reaches its maximum value and does not in-
crease any further. Precision and recall differ according
to expansion levels. Precision increases from L-4 onwards,
while recall continuously decreases as stacks are expanded
further.

Feedback value at L-0 (0.58) indicates that more than 40
% of crash buckets did not include any stack traces having fix
locations in their original (unexpanded) stacks. This result
implies that stack expansion is necessary to find fix locations
and predict recurring crashes.

However, higher levels of stack expansion may include
more irrelevant functions during the expansion. As a result,
accuracy is affected as we expand the traces more.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L-0 L-1 L-2 L-3 L-4 L-5 L-7 L-10 L-∞

Va
lu

e

Expansion Level

 Feedback
 Precision
 F-Measure
 Recall

Figure 7: Prediction accuracy according to various stack
expansion levels. The graph shows precision, recall and
F-measure with feedback at each expansion level.

122+ if(nsnull == text) {
123+ // set empty string

instead of returning
124+ // due to compatibility..
125+ text = "";
126+ }
...
130 char *unescaped = \

NS_strdup(text);

(a) Bug #522931

98 const char* deviceID = \
mCacheEntry->GetDeviceID();

99 + if (!deviceID) {
100+ *aDeviceID = nsnull;
101+ return NS_OK;
102+ }
103
104 *aDeviceID=NS_strdup(

deviceID);

(b) Bug #540566

Figure 8: Two fixes for the crash in Figure 1. Both fixes
check null before calling NS_strdup.

The overall prediction results show that our approach is
effective at predicting recurring stack traces. It is possible
to predict with either high precision or high recall, based
on the stack trace expansion level. Developers may apply
our approach with high expansion levels first to get higher
precision. Traces so predicted are more likely to recur. Af-
ter checking predicted missing traces in high expansion lev-
els, developers can reduce the expansion level to find more
traces.

5.2 Case Studies
This section provides case studies to address RQ2, the

usefulness of our approach. Figure 8 shows two crash fixes
for the crash in Figure 1. Both fixes added code to check for
the argument of NS_strdup. Since their root cause is similar
(non-null value for the NS_strdup argument), and the fixes
are simple, Bug #540566 could have been fixed earlier, had
the developer noticed that there is a trace not covered by
the first fix.

Figure 9(a) shows another example. Two stack traces
from a crash bucket are shown. Each circle is a function
in the trace with function names on the side. The bot-
tom circle is the crash point. The arrows show two dif-
ferent execution traces. The crash was first fixed in 3.6b4
(Bug #528311) by changing function nsXULTreeAccessi-

ble::GetChildAt in trace a. However trace b was not cov-
ered by the fix and the crash trace recurred. The same bug
report was re-opened and function nsXULTreeAccessible-

::GetTreeItemAccessible was fixed and then finally the
crash disappeared in 3.6b5. Our approach correctly predicts
trace b as recurring.

Figure 9(b) and Figure 9(c) show the first and second
fixes. Since the fixes are almost identical (adding IsDe-

funct() checker), the bug could have been fixed in the first
place, had the developer noticed that crash trace b was not
covered by the first fix.

One more example is shown in Figure 10. In this case, the
fix location is not in the original stack trace. Our approach
finds the fix location in the expanded trace from trace a.
However, we could not locate the fix in the expanded trace
from trace b. Firefox 3.6 included the fix, but stack trace b
recurred.

The above examples show that our approach can help de-
velopers. By knowing the existence of non-covered traces,
developers can easily fix the missed crash traces.

5.3 Developers’ Feedback
We presented our approach and some recurring crash pre-

diction examples briefly and asked Firefox developers for
feedback about the usefulness of our approach. We sent
emails to 151 individual developers who are related to crashes

186

IEnumConnectionPoints	
_RemoteNext_Thunk	

IEnumOleUndoUnits	
_Next_Stub	

nsAccessibleWrap	
::Next	
nsXULTreeAccessible	
::GetChildAt	

nsXULTreeAccessible::	
GetTreeItemAccessible	

nsRootAccessible	
::HandleEvent	

crash point

trace a

trace b

First Fix (#528311)
in 3.6b4

nsRootAccessible::	
HandleEventWithTarget	

Second Fix (#528311)
in 3.6b5

✓

✓

(a) Two stack traces from a crash bucket

286 NS_ENSURE_ARG_POINTER(
aChild);

287 *aChild = nsnull;
288
289+ if (IsDefunct())
290+ return NS_ERROR_FAILURE;
291
292 PRInt32 childCount = 0;

(b) First fix

545 *aAccessible = nsnull;
546
547- if (aRow < 0)
547+ if (aRow < 0 || IsDefunct

())
548 return;
549
550 PRInt32 rowCount = 0;

(c) Second fix

Figure 9: Two crash stack trace examples from a
crash bucket. A developer fixed this crash (Bug report
#528311) by modifying function nsXULTreeAccessible::-
GetChildAt shown in trace a. The fix was included in
3.6b4. However, trace b appeared again in 3.6b4 and
the developer reopened Bug #528311 and fixed func-
tion nsXULTreeAccessible::GetTreeItemAccessible. Finally,
the crash disappeared in 3.6b5. Our approach correctly
predicted that trace b will reappear.

and bug reports we used in our experiments. In addition, we
sent our survey to the Firefox developer and Mozilla static
analysis mailing lists. Among 21 responses, 3 developers said
our approach is very useful, 7 said it is useful and 10 devel-
opers requested more information to evaluate our approach.
Overall, developers were very interested in our approach and
considered it useful.

In addition, we have received promising and encouraging
comments from Firefox developers:

“It should be an interesting feature and useful like
any automation tool. It should make the engi-
neering work easier and keep users less annoyed.”

“We have been trying to get some stack search-
ing techniques going for quite some time to help
us analyze similar frames found across many dif-
ferent stacks. Definitely interested in any ideas
that you have for static analysis of stacks to find
additional problems.”

“The first patch fixed the known steps but missed
the fact that other routes led to the same state
inconsistency. . . . If you have a system that au-
tomates that process it would indeed be helpful.”

6. DISCUSSION
This section discusses the limitations of our approach and

threats to validity.

nsObjectFrame	
::Instantiate	

nsObjectFrame::	
InstantiatePlugin	

nsPluginHost::	
Instantiate	
EmbeddedPlugin	

nsPluginNativeWindow	
Win::CallSetWindow	

nsPluginNativeWindow	
::CallSetWindow	

nsObjectFrame::	
CallSetWindow	

crash point

trace a trace b

nsObjectLoadingContent	
::Instantiate	

nsObjectFrame	
::Instantiate	

Bug Fix (#535898)
in 3.6

✓

Figure 10: Two crash stack examples from the same
crash point. A developer fixed this crash (Bug report
#535898) in Firefox 3.6 by modifying two functions
nsPluginHost::GetPlugin and nsNPAPIPlugin::CreatePlugin
which are not in the stacks. In L-2 stack expansion, our
approach found one of the fix locations from trace a but
not from trace b and predicted it will recur. In 3.6 trace
b actually recurred but trace a did not.

6.1 Incorrect Crash Fixes
Our approach is based on crash fix locations assuming

fixes are correct. Therefore, we predict stack traces covered
by fixes will disappear. However, sometimes fixes are in-
correct [14, 28]. We also found incorrect crash fixes in our
dataset. In fact, many of our false negative cases are due to
such incorrect fixes.

Figure 11 shows a stack trace with a bug fix (Bug #541828)
as an example. Firefox crashed at Line 543, and the fix
added code to check the value of buf inside function nsZi-

pArchive::BuildFileList, which is in the original stack
trace. Our approach assumed the fix was correct and pre-
dicted the trace will disappear. However the fix was incor-
rect. Firefox crashed at Line 543 again. Later, the developer
added more code for verifying the value of buf to finally fix
this crash.

Gu et al. [14] proposed an approach to find incorrect fixes.
From a concrete bug triggering input, the approach gener-
ates more inputs that can still trigger the bug. Then they
used the generated inputs to verify a fix. We could not apply
their approach directly to crash fixes because we could not
obtain a crash triggering input from CRS. In fact, finding a
crash triggering input is challenging. Developing a compre-
hensive fix verification technique to identify incorrect fixes
remains as our future work.

6.2 Threats to Validity
We find the following threats to validity of our experi-

ment:

• The subject is open source software. We use only
Firefox as the subject in the experiment since it is pub-
licly available. In addition, it has a large number of crash
reports and bug fixes. Unfortunately, we could not find
any other open source projects having a large number of
publicly available crash reports. For this reason, we used
only Firefox as our subject. Our approach may yield dif-
ferent results for other software projects and their crash
data.

• Collected crash data might be biased. We chose 19
sub-releases of Firefox 3.6 to minimize the effect of ma-
jor code changes on collection of recurring crashes due

187

nsZipArchive::BuildFileList	 crash point

nsZipArchive::OpenArchive	

nsJAR::Open	

nsZipReaderCache::GetZip	

nsJARInputThunk::EnsureJarStream	

✓
(a) A crash trace

539 //-- Read the central directory headers
540 buf = startp + centralOffset;
541+ if (endp - buf < sizeof(PRUint32))
542+ return NS_ERROR_FILE_CORRUPTED;
543 PRUint32 sig = xtolong(buf); // crash point
544 while (sig == CENTRALSIG) {

(b) Bug #541828

Figure 11: A developer added code to check the value of
buf before using it. Since the fix was in function nsZi-
pArchive::BuildFileList, we predicted this trace will dis-
appear. However, the fix was incorrect and the same
trace recurred. Later, the developer added more code to
check buf.

to incomplete fixes. In addition, we collected crash re-
ports of 19 sub-releases over a two-week period due to an
overwhelmingly large number of crash reports. Our re-
curring trace prediction may be more/less accurate when
the approach is applied to different sub-releases or crash
reports collected over different periods.

• Oracle data set is incomplete. The actual recurred
stack traces serve as the oracle to evaluate our prediction
results. There is a large possibility of the oracle being
incomplete. For example, some crashes may not have
manifested in the period we collected crash data. It is
also possible that users did not send crash reports. When
more crash reports are used to evaluate our prediction,
the prediction results could be different.

7. RELATED WORK
We briefly review related work in this section.

7.1 Managing Crashes
After CRSs were deployed, many researchers proposed

techniques to analyze crash reports. One research area is
about failure clustering, or bucketing. Glerum et al. [12]
presented ten years of debugging experience using Windows
Error Reporting system (WER), including new bucketing
algorithms. WER uses more than 500 heuristics to put sim-
ilar crash reports into the same bucket. Podgurski et al. [23]
introduced a technique applying feature selection, clustering
and multi-variate visualization to group failures triggered by
similar causes. Brodie et al. [7] and Modani et al. [20] treated
stack traces as strings and applied several string matching
techniques to identify similar stack traces. Bartz et al. [5]
proposed a machine learning technique to identify similar
stack traces by identifying key similarity features. For ex-
ample, the call stack edit distance is a key feature in their
approach. Dang et al. [11] introduced the ReBucket tech-
nique to cluster duplicated crash reports. ReBucket mea-
sures the similarity between two call stacks based on the
number of functions on two call stacks, the distance of those

functions from the top frame, and the offset distance be-
tween the matched functions. These approaches focus on
finding similar traces. Our approach is different in that
we focus on finding non-covered stack traces from already
grouped similar traces.

Another area concerns about how to fix the reported crashes.
Manevich et al. [19] proposed the PSE (Postmortem Sym-
bolic Evaluation) technique to diagnose software failure. They
adopted dataflow and alias analysis to track the flow of a
single value from the failure point back to the points where
the value may have originated. Kim et al. [17] introduced
Crash Graphs combining multiple crash traces together to
provide aggregate view of crashes. Liblit et al. [18] intro-
duced a technique to reconstruct the execution path from
a crash in several environments. Artzi et al. [3] introduced
the ReCrash technique to reproduce software failure. In-
stead of using crash reports, ReCrash stores partial copies
of method arguments in memory to reproduce the crash.
Recently Kim et al. [15] introduced a technique to predict
top crashes early. They extracted features of top crashes by
a machine learner and predicted if a crash will be a top crash
when only a small number of crash reports are submitted.
All these techniques are applied before crashes are fixed to
help developers. However, our approach checks if the fixes
are incomplete and predicts crash traces not covered by the
fixes.

7.2 Bug Fix Verification
Gu et al. [14] tried to identify incorrect fixes. They gener-

ated test cases from distance-bounded weakest precondition
and used generated inputs to verify the fixes. Similarly,
recent test case generation techniques using dynamic sym-
bolic execution [9, 13, 24] can be used to verify bug fixes.
Snugglebug [10] also computes weakest precondition. Start-
ing from the bug location with a given buggy condition,
Snugglebug traces back the program path to the entry point
of the program and calculates the weakest precondition. If
the acquired precondition can not be satisfied, it is verified
that the buggy condition can not happen and the bug is
fixed. Our work also verifies bug fixes. Especially, it can
find incomplete fixes in terms of fix locations. Yin et al. [28]
investigated incorrect bug fixes from large operating system
code bases. They found at least 14.8%∼24.2% of sampled
fixes for post-release bugs incorrect. Among several bug
types concurrency bugs were the most difficult to fix. Our
work investigated crash bug fixes in Firefox and found 48%
of crashes were recurring after bug fixes.

8. CONCLUSIONS
We found 48% of fixed crashes in Firefox were recur-

ring. With the overwhelming number of crash reports, it
is challenging to identify missed crash traces manually. We
proposed an approach to automatically predict recurring
crashes by comparing stack traces with crash fix locations.
Our experimental evaluation on actual Firefox 3.6 crashes
showed that our approach yielded reasonable prediction ac-
curacy – 0.57 precision and 0.49 recall.

We believe that developers can use recurring crash pre-
diction information to check if their crash fix covers all the
reported crash traces. Had our approach been deployed ear-
lier, more than 2,225 recurring Firefox 3.6 crashes could have
been avoided. Feedback from Firefox developers involved in
crash fixes shows our approach is useful.

188

We plan to improve our approach by removing irrelevant
functions included in the stack trace expansion phase to
achieve better accuracy. In addition, reducing false nega-
tives of our approach by identifying incorrect fixes remains
as future work.

9. ACKNOWLEDGMENTS
We thank anonymous reviewers, Hongyu Zhang, Yida Tao

and Jindae Kim for their helpful comments on our draft.

10. REFERENCES
[1] E. Alpaydin. Introduction to Machine Learning. MIT

Press, 2004.

[2] Apple CrashReporter https://developer.apple.com/
library/mac/technotes/tn2004/tn2123.html, 2009.

[3] S. Artzi, S. Kim, and M. Ernst. ReCrash: making
software failures reproducible by preserving object
states. In ECOOP 2008 - Object-Oriented
Programming, volume 5142 of Lecture Notes in
Computer Science, pages 542–565. 2008.

[4] D. F. Bacon and P. F. Sweeney. Fast static analysis of
c++ virtual function calls. In Proc. 11th ACM
SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 324–341, 1996.

[5] K. Bartz, J. W. Stokes, J. C. Platt, R. Kivett,
D. Grant, S. Calinoiu, and G. Loihle. Finding similar
failures using callstack similarity. In Proc. 3rd
conference on Tackling computer systems problems
with machine learning techniques, pages 1–1. USENIX
Association, 2008.

[6] Google Breakpad
http://code.google.com/p/google-breakpad/.

[7] M. Brodie, S. Ma, G. Lohman, L. Mignet, M. Wilding,
J. Champlin, and P. Sohn. Quickly finding known
software problems via automated symptom matching.
In Proc. 2nd International Conference on Autonomic
Computing, pages 101–110, 2005.

[8] Mozilla Bug Reporting System
https://bugzilla.mozilla.org.

[9] C. Cadar, D. Dunbar, and D. Engler. KLEE:
unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proc. 8th
USENIX conference on Operating systems design and
implementation, pages 209–224, 2008.

[10] S. Chandra, S. J. Fink, and M. Sridharan.
Snugglebug: a powerful approach to weakest
preconditions. In Proc. 2009 ACM SIGPLAN
conference on Programming language design and
implementation, pages 363–374, 2009.

[11] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel.
Rebucket: A method for clustering duplicate crash
reports based on call stack similarity. In 34th
International Conference on Software Engineering,
pages 1084 –1093, 2012.

[12] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and
G. Hunt. Debugging in the (very) large: ten years of
implementation and experience. In Proc. ACM
SIGOPS 22nd symposium on Operating systems
principles, pages 103–116, 2009.

[13] P. Godefroid, N. Klarlund, and K. Sen. DART:
directed automated random testing. In Proc. 2005
ACM SIGPLAN conference on Programming language
design and implementation, pages 213–223, 2005.

[14] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su. Has the
bug really been fixed? In Proc. 32nd ACM/IEEE
International Conference on Software Engineering,
pages 55–64, 2010.

[15] D. Kim, X. Wang, S. Kim, A. Zeller, S. Cheung, and
S. Park. Which crashes should I fix first?: Predicting
top crashes at an early stage to prioritize debugging
efforts. IEEE Transactions on Software Engineering,
37(3):430–447, 2011.

[16] S. Kim, E. Whitehead, and Y. Zhang. Classifying
software changes: Clean or buggy? IEEE Transactions
on Software Engineering, 34(2):181–196, 2008.

[17] S. Kim, T. Zimmermann, and N. Nagappan. Crash
graphs: An aggregated view of multiple crashes to
improve crash triage. In IEEE/IFIP 41st International
Conference on Dependable Systems Networks (DSN),
pages 486–493, 2011.

[18] B. Liblit and A. Aiken. Building a better backtrace:
Techniques for postmortem program analysis.
Technical report, Univ. of California, Berkeley, 2002.

[19] R. Manevich, M. Sridharan, S. Adams, M. Das, and
Z. Yang. PSE: explaining program failures via
postmortem static analysis. In Proc. 12th ACM
SIGSOFT twelfth international symposium on
Foundations of software engineering, pages 63–72,
2004.

[20] N. Modani, R. Gupta, G. Lohman,
T. Syeda-Mahmood, and L. Mignet. Automatically
identifying known software problems. In IEEE 23rd
International Conference on Data Engineering
Workshop, pages 433–441, 2007.

[21] D. C. Montgomery, G. C. Runger, and N. F. Hubele.
Engineering Statistics. Wiley, 2001.

[22] Mozilla Crash Stats https:

//crash-stats.mozilla.com/products/Firefox.

[23] A. Podgurski, D. Leon, P. Francis, W. Masri,
M. Minch, J. Sun, and B. Wang. Automated support
for classifying software failure reports. In Proc. 25th
International Conference on Software Engineering,
pages 465–475, 2003.

[24] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for c. In Proc. 10th European
software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on
Foundations of software engineering, pages 263–272,
2005.

[25] Socorro - Mozilla Crash Reporting System
https://github.com/mozilla/socorro.

[26] Understand http://www.scitools.com/index.php.

[27] Windows Error Reporting system http://msdn.

microsoft.com/en-us/windows/hardware/gg487440.

[28] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and
L. Bairavasundaram. How do fixes become bugs? In
Proc. 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software
engineering, pages 26–36, 2011.

189

