
Which Crashes Should I Fix First?:
Predicting Top Crashes at an Early Stage

to Prioritize Debugging Efforts
Dongsun Kim, Member, IEEE, Xinming Wang, Student Member, IEEE,

Sunghun Kim, Member, IEEE, Andreas Zeller, Member, IEEE,

S.C. Cheung, Senior Member, IEEE, and Sooyong Park, Member, IEEE

Abstract—Many popular software systems automatically report failures back to the vendors, allowing developers to focus on the most

pressing problems. However, it takes a certain period of time to assess which failures occur most frequently. In an empirical

investigation of the Firefox and Thunderbird crash report databases, we found that only 10 to 20 crashes account for the large majority

of crash reports; predicting these “top crashes” thus could dramatically increase software quality. By training a machine learner on the

features of top crashes of past releases, we can effectively predict the top crashes well before a new release. This allows for quick

resolution of the most important crashes, leading to improved user experience and better allocation of maintenance efforts.

Index Terms—Top crash, machine learning, crash reports, social network analysis, data mining.

Ç

1 INTRODUCTION

MANY of today’s software systems include automated
problem reporting: As soon as a problem occurs, the

system reports the problem details back to the vendor, who
can then leverage these details to fix the problem. As an
example of automated problem reporting, consider the
well-known Firefox Internet browser. When the runtime or
operating system (OS) detects an unrecoverable failure (a
“crash”), the browser process is terminated. A separate
“talkback” process detects this and requests the user to
submit a crash report that summarizes this crash occurrence
to Firefox developers (Fig. 1). Each crash report includes a
crash point,1 that is, the program location where the crash
occurred. Crashes that have the same crash point are
considered to be the same [58]. In addition, a crash report
includes other information relevant to the crash occurrence,
such as user comments, hardware and software configura-
tion, as well as thread stack traces—stacks of methods that
were active at the moment of the crash.

The number of crash reports thus submitted can be large:
Everyday, Firefox users submit thousands of crash reports;
the number spikes considerably right after a new software
release. The crashes summarized by these crash reports,
however, are not equally frequent.2 As we show in this paper,
it can well be that only a small number of crashes account for
the vast majority of crash reports. We call these crashes top
crashes. In Thunderbird, for instance, we found that more
than 56.42 percent of all crash reports could be traced back to
only 20 crashes. In other words, if we could fix the defects that
cause these 20 “top crashes” beforehand, we could reduce the
number of crash occurrences by 56.42 percent or more. In
Firefox, the top-20 crashes even accounted for 78.26 percent
of all crash reports, implying that a little effort could yield a
big gain—if only we knew which defect to fix. It is therefore
crucial to identify these top crashes as soon as possible such
that developers can prioritize their debugging efforts and
address the top crashes first.

Currently, most crash reporting systems sort crashes
based on the number of their crash reports. These systems
can easily be used to recognize the top crashes—but only in
hindsight. To identify the top crashes, one must wait and see
until enough crash reports have been submitted; this
implies that users have to suffer many crashes before
getting a fix, leading to possible data loss and frustration. In
this paper, we thus investigate strategies to predict top
crashes. Specifically, our goal is to determine whether a
crash is a top crash the first time it occurs. Such a prediction
can be applied to identify top crashes at an early stage of
development, for example, in the alpha or beta-testing
phases, when only a few crash reports are available. This
may allow developers to focus on top crashes earlier and
improve the overall quality of the software in a much more
cost-effective manner.

430 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 3, MAY/JUNE 2011

. D. Kim and S. Park are with the Department of Computer Science and
Engineering, Sogang University, Shinsoo-dong, Mapo-gu, Seoul 121-742,
South Korea. E-mail: {darkrsw, sypark}@sogang.ac.kr.

. X. Wang, S. Kim, and S.C. Cheung are with the Department of Computer
Science and Engineering, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong.
E-mail: {rubin, hunkim, scc}@cse.ust.hk.

. A. Zeller is with the Department of Computer Science, Saarland
University, Campus E1 1, Saarbrücken 66123, Germany.
E-mail: zeller@acm.org.

Manuscript received 29 Nov. 2009; revised 26 Apr. 2010; accepted 2 June
2010; published online 7 Feb. 2011.
Recommended for acceptance by A. Bertolino.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2009-11-0384.
Digital Object Identifier no. 10.1109/TSE.2011.20.

1. It is also called a crash signature [54].

2. The frequency of a crash is defined as the number of crash reports that
contain the corresponding crash point.

0098-5589/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

To address this challenge, we adopt a learning-based

approach, summarized in Fig. 2. From an earlier release, we

know which crash reports are “top” (frequent) and which

ones are “bottom” (infrequent). We extract the top and

bottom stack traces as well as their method signatures. The

features of these signatures are then passed to a machine

learner. The learner can then immediately classify a crash

summarized by a new incoming crash report as frequent (a

top crash) or not. As shown in Section 3, the deployment of

an accurate top-crash predictor may reduce the number of

crash reports in Firefox 3.5 by at least 36 percent if

developers fix top crashes first.
We employ features from crash reports and source code to

train a machine learner. Our preliminary observations and

insights led us to focus on three types of features that form

the core of our approach:

. First, we observed that statistical characteristics can
indicate whether a crash is a top or bottom crash: In
particular, methods in stack traces of top crashes
appear again in other top crashes. This motivated us
to extract historical features from crash reports.

. Second, intramethod characteristics can also indicate
whether a method belongs to frequent crashes;

complex methods may crash more often. This
motivated us to employ complexity metrics (CM)
features such as lines of code and the number of
paths for top-crash prediction.

. Third, intermethod characteristics can describe
crash frequency; well-connected methods in call
graphs may crash often. To measure connectedness,
we employ social network analysis (SNA) features
such as centrality.

To validate our approach, we investigate the crash report

repositories of the Firefox Web browser as well as the

Thunderbird e-mail client. We use a very small training set of

only 150-250 crash reports from a prior release (that is, the

crash reports received within 10-15 minutes after release).

Given the small size of the set, the machine learner can then

classify crash reports for the new release immediately—that

is, with the very first crash report. This classification

method has a high accuracy: In Firefox, 75 percent of all

incoming reports are correctly classified; in Thunderbird,

the accuracy rises to 90 percent. These accurate prediction

results can provide valuable information for developers to

prioritize their defect-fixing efforts, improve quality at an

early stage, and improve the overall user experience.
From a technical standpoint, this paper makes the

following contributions:

1. We present a novel technique to predict whether a
crash will be frequent (a “top crash”) or not.

2. We evaluate our approach on the crash report
repositories of Thunderbird and Mozilla, demon-
strating that it scales to real-life software.

3. We show that our approach is efficient, as it
requires only a small training set from the previous
release. This implies that it can be applied at an
early stage of development, e.g., during alpha or
beta testing.

4. We show that our approach is effective, as it predicts
top crashes with high accuracy. This means that effort
on addressing the predicted problems is well spent.

5. We discuss and investigate under which circum-
stances our approach works best; in particular, we
investigate which features of crash reports are most
sensitive for successful prediction.

KIM ET AL.: WHICH CRASHES SHOULD I FIX FIRST?: PREDICTING TOP CRASHES AT AN EARLY STAGE TO PRIORITIZE DEBUGGING... 431

Fig. 2. Approach overview. Our approach has three steps: extracting traces from top and bottom crash reports, creating training data from the traces,
and predicting unknown crashes. The first step classifies top and bottom crashes and extracts stack traces from their reports. The second step
extracts methods from the stack traces and characterizes these methods using feature data, which are extracted from source code repositories.
Feature values are then accumulated per trace. These are used for training a machine learner. In the prediction step, the machine learner takes an
unknown crash stack trace and classifies it as a top or bottom trace. (a) Extracting crash traces. (b) Creating corpus. (c) Prediction.

Fig. 1. A Firefox crash message from a user’s perspective.

6. Overall, we thus allow for quick resolution of the
most pressing bugs, increasing software stability,
and hence, user satisfaction.

The remainder of the paper is organized as follows: After
giving details and insights into crash reporting at Firefox
and Thunderbird (Sections 2 and 3), we describe our
approach in detail (Section 4), investigating central items
such as feature selection (FS) and model construction.
Section 5 describes the evaluation of our approach on the
Firefox and Thunderbird crash report repositories and
presents the evaluation results. Section 6 discusses potential
issues of our approach and identifies threats to its validity.
After discussing the related work (Section 7), we close with
conclusions and future work (Section 8).

2 BACKGROUND

Many software products support crash reporting systems,
such as Dr. Watson [46], Apple Crash Report [16], and
Breakpad [9]. When a crash occurs, the system automati-
cally generates a crash report that captures the program’s
status and then sends this crash report to the corresponding
crash report repository maintained by the software devel-
opment team. For example, the BreakPad [9] system used in
Mozilla gathers the crash point, crash time, operating
system and its version, hardware information, crash reason,
crash address, optional user comments, and all thread stack
traces from the crash. An example of a crash report is
shown in Fig. 3.

The information provided by crash reports is valuable for
bug localization and fixing. Its availability has made a huge
difference in the manner in which software is developed. For
instance, crash reports have enabled Microsoft to fix
29 percent of the Windows XP bugs that were covered in
Windows XP SP1, and more than half of the Office XP errors
bugs that were covered in Office XP SP2 [15].

Although crash reporting systems facilitate information
collection, they are also likely to raise an issue: There are too
many crashes for developers to investigate thoroughly [51].
For example, Firefox (all versions) users submit more than
600,000-700,000 crash reports every week. These crash
reports contain 700-1,900 distinct crashes for each version.
Most of them were reported within a few days after release.
In the case of Firefox 3.5, which is one of the latest versions
of Firefox and was released on 30 June 2009, users
submitted 410,000 crash reports within one month of its
release, with more than 750 distinct crashes. As shown in
Fig. 4, the number of crash reports steadily increased for
two weeks. More than 15,000 crash reports were submitted
per day until the next version (Firefox 3.5.1) was released.
Note that Firefox 3.5.1 and its descendants also show results
similar to those of Firefox 3.5.

Given this large number of crashes, it is unlikely that
developers would have had sufficient time to investigate all
of them in a short period of time. It is in this background
that we are interested in top crashes.

3 MOTIVATION

In this section, we present the details of our investigation
into Firefox and Thunderbird crashes. This investigation

has shed some light on the reasons for focusing on top
crashes (Section 3.1), the limitations of the current practice
in identifying top crashes (Section 3.2), and how prediction
of top crashes can improve the practice (Section 3.3). Note
that all of the data reported in this section are gathered from
the Mozilla crash repository [49], which is made publicly
available in a Socorro [54] server.

3.1 Why Focus on Top Crashes?

One of the central hypotheses in our work is that a small
number of top crashes account for a majority of crash
reports. To verify this hypothesis, we investigated the crash
reports for Firefox 3.0 from July to December 2008 and those
for Thunderbird 3.0 from January to May 2009. More than
390,000 Firefox 3.0 crash reports and 35,000 Thunderbird 3.0
crash reports were gathered. From the data, we observed
that some crashes were reported more frequently than
others. For example, one crash with crash point at a
statement of the function “_PR_MD_SEND” was reported
more than 11,000 times per week, while another crash with
crash point at a statement of the function “nsHTMLDocu-
ment::Release()” was reported less than twice per
week. Most crash repositories, including Socorro [54], list
the most-reported crashes first. To illustrate the distribution

432 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 3, MAY/JUNE 2011

Fig. 3. Example of a crash report. A crash report includes the crash
method signature, crashed time, OS and its version, user comments,
and stack traces of all threads when the crash occurs. Developers use
this information to fix crashes.

of crash reports, we sorted crashes by their frequency of
being reported, and then counted the percentage of crash
reports accounted for in each interval of 10 crashes. The bar
chart in Fig. 5 shows the results. For example, the leftmost
bar indicates that the top-10 crashes accounted for more
than 50 percent of the Firefox crash reports and more than
35 percent of the Thunderbird crash reports. Fig. 5 provides
the initial validation of our hypothesis: For example, the
top-20 crashes account for 72 and 55 percent of the crash
reports for Firefox and Thunderbird, respectively.

Note that such a trend has also been observed in
commercial software. For example, by analyzing crash
reporting data, Microsoft has found that a small set of
defects is responsible for the vast majority of its code-related
problems: “fixing 20 percent of code defects can eliminate
80 percent or more of the problems users encounter” [1]. This
indicates that identifying top crashes is important for
commercial products as well as open source projects.

Moreover, such a phenomenon is not restricted to crash-
related failures. For example, Adams [2] observed that most
operational system failures are caused by a small propor-
tion of latent faults. Goseva and Hamill [23], [25] observed
that a few small regions in a program could account for the
reliability of the whole program. Our finding here is
consistent with these studies.

3.2 Limitation of Current Practice

Top crashes need to be fixed as soon as possible. Given a
top crash, how long does it take for developers to start
working on it? Ideally, a top crash should be handled
immediately once it is reported. In other words, the date of
a first crash report should be close to the date when
developers begin to work on the crash. To verify whether
this is the case in the real world, we investigated the crashes
and bug-fixing activities of Firefox 3.5.

One issue here is how to determine the time when

developers begin to work with a crash. In Mozilla projects

such as Firefox and Thunderbird, management policy

mandates that any bug-fixing activity for a crash in the crash

repository must begin with the creation of a bug report using

Bugzilla [10] by the developer. Thus, when the developer

creates a bug report for a crash, we assume that he or she is

ready to work on this crash. Therefore, we regard the time

when its corresponding bug report is created as the time

when developers begin to work on this crash. With this

information, we calculated the number of days it took for a

KIM ET AL.: WHICH CRASHES SHOULD I FIX FIRST?: PREDICTING TOP CRASHES AT AN EARLY STAGE TO PRIORITIZE DEBUGGING... 433

Fig. 4. Number of crash reports for Firefox 3.5 per day since its release (30 June 2009). More than 14,000-24,000 crash reports have been reported
per day. The number of crash reports indicates that users experienced at least the same number of failures (abrupt program termination). Note that
750 crashes for (crash points) are reported for Firefox 3.5.

Fig. 5. Number of crash reports ranked in groups of 10 for Firefox and
Thunderbird. Firefox 3.0 and Thunderbird 3.0 crash reports were
collected for July 2008-December 2008, and January 2009-May 2009,
respectively. The top-10 crashes accounted for more than 35 percent
(Thunderbird) and 50 percent (Firefox) of the total number of crash
reports.

developer to start working on a top crash. Fig. 6 shows the
results for the top-100 crashes of Firefox 3.5.

From Fig. 6, we can observe that the real situation is far

from ideal: On average, developers waited 40 days until they

started to work on a top-10 crash. This is unfortunate because,

given the frequency of these top crashes, such a delay would

mean hundreds of thousands of crash occurrences.
So why did Mozilla developers allow such a long delay

in handling top crashes? One might blame this delay on

insufficient motivation for maintenance. However, our

personal communication with Mozilla development team

members Gary Kong and Channy Yun suggests otherwise:

Mozilla developers are generally eager to work on top

crashes. However, they are conservative in acknowledging

a crash as a top crash, even if it appears at the top of the list

for the moment. This conservativeness is driven by the

concern that, at the early stage when crashes are first

reported (e.g., in the alpha and beta-testing phases), the

frequency of a crash might be substantially different from

its frequency at the later stage. Therefore, developers prefer

to “wait and see” until there are sufficient crash reports to

support a crash being a top crash.
What if Mozilla developers were less conservative? Let

us assume that they had used the data at an early stage, the

alpha-testing phase, to determine top crashes. Using the

5,199 crash reports submitted during the alpha-testing

phase of Firefox 3.5, they would replace those crashes that

occurred most frequently in this stage. However, are these

crashes really the top crashes? Fig. 7 illustrates the ranking

of these crashes in terms of their actual occurrence

frequencies, which are derived from all 415,351 crash

reports submitted during the main life span of Firefox 3.5

(from the start of alpha testing to the day when the next

version was released). In this figure, each bar represents a

k-most-frequent crash in the alpha-testing phase. For

example, the leftmost bar indicates that the most-frequent

crash in the alpha-testing phase is ranked 162nd in terms of

actual occurrence frequency.

From Fig. 7, we can observe that the k-most-frequent
crashes in the alpha-testing phase are poor indicators of
actual top crashes: Only two of them (k ¼ 3 and k ¼ 10) are
top-20 crashes, while most of the others are actually
infrequent crashes. In fact, the 20 most-frequent crashes in
the alpha-testing phase can account for only 13.35 percent of
the all crash reports of Firefox 3.5, whereas the actual top-20
crashes account for 78.26 percent. The key reason, as pointed
out by Fenton and Neil [19], is that the failure rate of a fault at
the early stage (prerelease) can be significantly different from
its failure rate after release. In practice, the goal of internal
and volunteer alpha testers is to expose the most number of
bugs with the least number of test cases. Therefore, they
usually tend not to repeat already-exercised crashing test
cases even though these test cases might trigger top crashes.

The above discussion highlights the dilemma of the
current practice: By being more conservative in determin-
ing top crashes, developers delay bug fixing, but by being
less conservative in determining top crashes, developers
miss the actual top crashes. The core of the problem is
that current practice relies on hindsight to identify top
crashes, that is, we can accurately identify top crashes
only after they have already caused significant trouble for
the users.

It should be noted that most of the top crashes do occur
in the early phase, although they are not frequent. For
example, 16 of the top-20 crashes of Firefox 3.5 occurred at
least once during the alpha testing (shown in the bottom-
right Gantt chart of Fig. 8). This indicates an opportunity for
improving current practice (see Section 6.7 for more
discussion on this topic).

3.3 How Can Prediction Improve the Current
Practice?

To address this problem of current practice, we advocate a
prediction-based approach that does not rely on hindsight
to identify top crashes. With our approach, it becomes
feasible to identify top crashes during prerelease testing
(i.e., alpha or beta testing), and also to react as soon as the
first crash reports are received. Rather than waiting for a
number of crashes to occur, developers can identify and
address the most pressing problems without delay.

To see the benefit of our approach, let us assume that we
have an “ideal top-crashes predictor” that can accurately

434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 3, MAY/JUNE 2011

Fig. 6. Number of days for crashes to be reported as bugs (Firefox 3.5).
We measured the number of days between the first crash report for each
crash and its bug report. There was a correlation between the crash’s
ranking and time taken for bug reporting.

Fig. 7. The ranking of most-frequent crashes in the alpha-testing phase.

determine whether a crash is a top-k crash the first time this
crash is reported.3

Fig. 8 compares the results obtained using the current
practice with the results obtained by applying our predictor
to prioritize top crashes. In this figure, the curve “without
prediction” represents the actual situation. It shows the
number of crash reports submitted each day after Firefox 3.5
was released. (These numbers were gathered from the
Mozilla crash repository.) The curve labeled “with predic-
tion” represents the hypothesized scenario in which the
availability of the predictor allows the developers to identify
top crashes at their first occurrence. Specifically, we assume
that developers focus on top-20 crashes: Whenever a new
crash is reported, they will use the ideal predictor to
determine whether it is a top-20 crash.

The two Gantt charts on the right-hand side of Fig. 8 give
details on how these two curves are derived. The upper
Gantt chart shows the actual scenario. For each top-20 crash,
the bar starts with the date when developers start to work on
a particular crash and ends with the date when this crash is
fixed. To determine these two dates, we queried the bug
report corresponding to this crash in the Bugzilla database
of Firefox. The lower Gantt chart shows the hypothesized
scenario, in which developers apply our ideal predictor on
every incoming crash report to determine whether it is a
top-20 crash. If the predictor returns a positive answer,
developers immediately start working on this crash. To get a
fair comparison, we assume that the time required for
developers to fix a crash is the same in the actual and
hypothesized scenarios. Note that 11 out of 20 top crashes

had not yet been fixed at the time when we submitted this
paper (29 November 2009), so we kept these 11 crashes as
being unfixed in the hypothesized scenario. They are shown
as the bottom 11 bars in both Gantt charts.

Fig. 8 shows that a significant amount of crash occurrences
can be avoided with a prediction-based approach; overall,
the number of crash reports can be reduced by 36.26 percent.
In reality, none of the top-20 crashes had been fixed before
Firefox 3.5 was released. Had a top-crash predictor been
deployed, at least five of the top-20 crashes would have been
fixed before release. This result is encouraging because it
shows that the prediction-based approach holds promise in
improving the current practice. Motivated by this improve-
ment, we propose our approach toward top-crash prediction,
which is introduced in the next section.

4 OUR APPROACH

4.1 Overview

To predict the top crashes, we used a machine learning
approach, with previous top and bottom crashes as training
set. Fig. 2 depicts the overview of our approach.

The first step is to extract top and bottom crashes from
Mozilla crash reporting systems (Socorro [54]), as shown in
Fig. 2a. These crash reports are from previous versions. We
classified them on the basis of the number of crashes. From
the extracted crash reports, we obtained crash stack traces
and methods in the traces.

The second step is to generate a corpus by analyzing the
extracted methods and stack traces, as shown in Fig. 2b. We
characterized the crash methods using three groups of
features: history, complexity metrics, and social network

KIM ET AL.: WHICH CRASHES SHOULD I FIX FIRST?: PREDICTING TOP CRASHES AT AN EARLY STAGE TO PRIORITIZE DEBUGGING... 435

Fig. 8. Comparison between the real situation (no prediction) and the hypothesized scenario (with prediction), in which developers had used top-
crash predictor to prioritize their debugging effort for Firefox 3.5.

3. The value of k is determined by the product manager based on the
maintenance budget.

analysis features (Section 4.2). Then, we transformed the
feature vectors of each method to (stack) trace-based feature
vectors since our approach is a stack-trace-based prediction
(Section 4.3). From the trace-based feature vectors, we
generated a corpus to train a machine learner.

Fig. 2c describes the prediction step. If there is a new
crash report, we characterize the stack trace in the report
using the three groups of features and feed the feature
vector to the trained machine learner. The machine learner
predicts whether the crash is at the top or the bottom.

4.2 Features

In this section, we describe the method-level features:
history, CM, and SNA. To characterize stack traces in the
top and bottom crashes, we consider several sets of features.
First, we extracted individual method feature data from
crash reports of previous versions (history features) and
source code repositories (CM and SNA features). Then, we
applied the feature data to each method and generated
method-based feature vectors.

4.2.1 History Features—“Methods (Included in Stack

Traces) in Top Crashes May Appear in Other Top

Crashes Again”

We hypothesized that methods included in top crashes
would appear in other top crashes again. Since different
versions of the same software product usually have similar
architecture and structure, we assumed that methods in the
top stack traces reported in the early versions would
frequently crash again in subsequent versions.

This assumption was inspired by bug localization
research [32], [40]. It is a common understanding that bug

occurrence is local. For example, if a method introduced a
bug recently, it would soon introduce other bugs [32].
Similarly, we believe our history features reflected these
characteristics for the crash methods in stack traces.

Table 1 lists 10 history features used in our approach.
The “* count” features represent the occurrences of methods
in stack traces. The “normalized * count” features are
normalized versions of the “* count” features. They were
normalized on the basis of the maximum value of each
“* count” feature. “* class method” encodes methods to
appear only in the top stack traces, only in the bottom stack
traces, or in both stack traces. The feature “# of crash
occurrence” represents the number of crash reports that the
corresponding methods belong to.

4.2.2 Complexity Metrics Features—“Complex Methods

May Crash Often”

We assumed that complex methods crash more frequently
than simple methods. Therefore, we characterized methods
using complexity metrics features such as the lines of code
and number of paths. The choice of these features was
inspired by Buse and Weimer’s work [11] on path execution
frequency prediction. According to their work, complexity
metrics features have a strong correlation with “hot paths.”

We extracted 28 CM features using Understand C++
[55] from the source code, as shown in Table 2. The
features included the number of lines, statement line count,
number of parameters, cyclomatic complexity [41], knots
(overlapping loop) [57], and maximum nesting. Object-
oriented metrics were not taken into account since large
parts of our subject programs are not written in object-
oriented languages.

436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 3, MAY/JUNE 2011

TABLE 1
Set of History Features

TABLE 2
Selected Complexity Metrics Features

4.2.3 Social Network Analysis Features—

“Well-Connected Methods Will Be Executed Often

and Thus May Crash Often”

While complexity features capture the internal properties of
each method, social network analysis features [26] capture
the external properties of a method, i.e., how the method is
related to other methods. We considered the most common
type of relation: method calls. Our basic observation was
that a crash is likely to be a top crash if it includes many
well-connected methods that frequently occur in the stack
traces of a program. This observation motivated the
inclusion of SNA features in our prediction model.

In social network analysis, how well a node is connected
(method in our case) can be measured by many different
metrics. In our work, we considered five, which are shown
in Table 3. Note that these metrics are commonly used by
other software engineering researchers (e.g., [39], [42], [59]).
To extract these SNA features, we used CodeViz [14] to
construct call graphs from the source code of Firefox and
Thunderbird, as well as work by Jung [30], to derive the
values of these features for each method in the call graph.

4.3 Prediction Model

Our prediction model is based on stack traces, as shown in
Fig. 2. For example, suppose that an unknown stack trace ti

is given. Our model predicts if t1 belongs to the top or
bottom crashes. Therefore, we used trace-based feature
vectors rather than method-based feature vectors.

To obtain trace-based feature vectors, we integrated the
method-based feature vectors as shown in Fig. 9. For
example, suppose that a crash has a crashing stack trace that
includes the methods: ½a; b; x; . . . ; y�. These methods have
individual feature vectors such as a ¼ h2; 1; . . . ; 5i, b ¼
h4; 7; . . . ; 2i, x ¼ h5; 8; . . . ; 1i, and y ¼ h1; 3; . . . ; i. Then, our
approach obtained the sum of each ith element of the
method-based feature vectors. In addition to the sum values,
we obtained the average values of each element. Since a
method-based feature vector has 43 elements (10 history,
28 CM, and five SNA features), a trace-based feature vector
has 86 features (43 sum and 43 average features).

As an example of such features, consider two feature
vectors of CloseRowObject() (a top crash) and GetDir-

ectoryFromLB() (a bottom crash) where these two
crashes are from Thunderbird 3.0. In the feature vector of
the top crash, the averages of “In degree” and “Out degree”
features were 5 and 1.82, respectively (the sum values are
115 and 42), while, in the vector of the bottom crash, those
values were 0.2 and 0.34 (the sum values are 7 and 12).
“Betweenness centrality” values (average) of the two
crashes are 1.83 (top) and 0.34 (bottom), respectively. The
top crash is connected to more methods than the bottom
crash and is placed on more shortest paths of call graphs.
This supports our hypothesis that a well-connected crash is
more likely to be a top crash.

In the case of the history feature group, these examples
also support our hypothesis. The average and sum values of
the “Top count” feature for the top crash were 30.57 and
703, respectively, while those of the bottom crash were 7.6
and 266. The top crash has more methods that occurred in
other top crashes than the bottom crash. This supports our
hypothesis that methods in top crashes may appear in other
top crashes again.

In the case of the “Cyclomatic” feature, which is one of
the complexity metrics feature group, the top and bottom
crashes had 70 and 14, respectively. (These are the sum
values. The average values were 3.04 and 0.4, respectively.)
The top crash has more linearly independent paths than the
bottom crash. This supports our hypothesis that complex
methods may crash often.

These examples describe how features characterize top
and bottom crashes. Although these examples may not
perfectly describe the characteristics of top and bottom

KIM ET AL.: WHICH CRASHES SHOULD I FIX FIRST?: PREDICTING TOP CRASHES AT AN EARLY STAGE TO PRIORITIZE DEBUGGING... 437

TABLE 3
Set of Social Network Analysis Features

Fig. 9. Trace-based feature vector transformation from method-based
feature vectors. For each method in a stack trace, method-based feature
vectors are generated. Method-based feature vectors are transformed
into a trace-based feature vector. This vector has the sum and average
values of each element in the method-based feature vectors.

crashes, they motivate us to investigate on three feature
groups.

5 EVALUATION

We present the experimental evaluation of our approach in
this section. Five research questions will be evaluated:

. RQ1: Is history information indicative of top
crashes?

. RQ2: Is the complexity of a method indicative of its
chance of triggering top crashes?

. RQ3: Does the connectedness of a method correlate
with its chance of occurring in top crashes?

. RQ4: Is the size of training data relevant to the
accuracy of top-crash prediction?

. RQ5: Which feature is more indicative than the other
features?

This section describes the experiment setup to evaluate our
research questions and reports the experimental results.

5.1 Experiment Setup

For our experiments, we used real crash reports from two

open source systems: Firefox and Thunderbird. To demon-
strate the effectiveness of our approach toward unknown

stack traces, we explicitly separated the training set and the
testing set. For example, we collected a training set from

Firefox 3.0.9 and a testing set from Firefox 3.0.10. Sometimes,
crashes may not be fixed in the following versions. For

example, the crash “_PR_MD_SEND” in Firefox 3.0.9 was not
fixed in Firefox 3.0.10. As a result, we find that some crashes

are reported across different software versions. For fair
experiments, we ensured that the reports of the same crash

did appear in both the training and the testing sets by
removing these reports from our experiments.

Table 4 describes the data sets (corpus) used in our

experiments. We collected crash reports for four programs
(two versions of Firefox and two versions of Thunderbird).

The two Firefox projects had more than 1,000 data instances
(i.e., trace-based feature vectors) extracted from the stack

trace database, while the two Thunderbird projects had
around 590 data instances. Each project had the same

number of top and bottom crashes. Each instance was
characterized by 10 history, 28 CM, and five SNA features,
as described in Section 4.2, and had 86 elements (sum and

average of features), as described in Section 4.3.
Specifically, we created training sets as follows:

1. Sort crashes and choose top-20 crashes.
2. Randomly select n (e.g., 40 in the case of Firefox

3.0.9) stack traces for each crash.

3. Choose bottom-20 crashes and select all traces as
these crashes had less than 10 crash reports (some-
times only one).

4. Select the additional bottom 20þ k crashes and
select all traces until the number of traces is equal
to the number of top traces. The testing sets were
also created in the same manner.

We only used history information in the training set to
create our testing set, as we assumed that we did not know
the history information of the testing set. For example, we
counted how many times the method appeared in top
crashes for the training set. It is possible that some methods
in the testing set did not appear in the training set. In this
case, we set the corresponding history features as missing
values [37].

For a machine learner, we used two machine learning
algorithms, Naive Bayes (NB) [45] and multilayer percep-
tron (MLP) [52]. Naive Bayes is a simple probabilistic
classification algorithm based on Bayes’ theorem [6] with
strong naive independence assumptions. It takes training
data and calculates probabilities from them. When a new
instance is presented, it predicts the target value of the new
instance. It is adopted for our evaluation because of its
simple structure and fast learning.

MLP is a feedforward artificial neural network [27]. It
has several layers of perceptrons, which are simple binary
classifiers. Learning in MLP occurs by changing connection
weights between perceptrons after the training data are
processed. MLP was chosen for our evaluation because
MLP can efficiently classify nonlinear problems [52] (we
assumed that it is difficult to learn features in trace-based
feature vectors using linear functions).

In addition, we applied the feature selection algorithm
proposed by Shivaji et al. [53], which is based on a
backward wrapped feature selection technique [47]. First,
we put features in order according to their predictive power
as measured by the information gain ratio [34], a well-
known measure of the amount by which a given feature
contributes information to a classification decision. Then,
we removed the least significant feature from the feature set
and measured the top/bottom crash prediction accuracy.
Next, we continually removed the next weakest feature and
measured the accuracy until there was only one feature left
in the feature set. After this iteration, it was possible to
identify the best prediction accuracy and the feature set that
yielded the best accuracy.

Although our application scenarios consider prediction
at an early stage (e.g., alpha or beta-testing phases), our
evaluation concerns two subsequent official release versions
(Firefox) because we focused on a performance comparison
between our approach and the wait-and-see approach. In

438 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 3, MAY/JUNE 2011

TABLE 4
Data Set Used in Our Experiments

other words, we cannot compare the performance if we
predict the alpha version crash stack traces as stated in
background (Section 3); the wait-and-see approach does not
work for the alpha version. Note that stack traces of alpha
versions are the same as those of official versions. There-
fore, our evaluation deals with correct subjects.

In the case of Thunderbird, we adopted two subsequent
alpha versions for our evaluation because these versions are
quasi-official versions, which consist of sufficient crash
reports. In addition, crash reports of the latest official
version (Thunderbird 2.0) are currently not available.
Therefore, no crash report of the version can be collected.

To implement all the machine learning algorithms
mentioned above, we used the Weka [56] library.

5.2 Evaluation Measures

Applying a machine learner to a top-crash prediction
problem can result in four possible outcomes:

1. predicting a top stack trace as a top stack trace
(T! T),

2. predicting a top stack trace as a bottom stack trace
(T! B),

3. predicting a bottom stack trace as a top stack trace
(B! T), and

4. predicting a bottom stack trace as a bottom stack
trace (B! B).

Items 1 and 4 are correct predictions, while the others are
incorrect.

We used the above outcomes to evaluate the classifica-
tion with the following four measures [3], [31], [48]:

. Accuracy: the number of correctly classified stack
traces divided by the total number of traces. This is a
good overall measure of classification performance.

Accuracy ¼ NT!T þNB!B
NT!T þNT!B þNB!T þNB!B

: ð1Þ

. Precision: the number of stack traces correctly
classified as expected class (NT!T or NB!B) over
the number of all methods classified as top or
bottom stack traces (NT!T þNB!T or NB!B þ
NT!B).

Precision of Top crashed traces

P ðT Þ ¼ NT!T
NT!T þNB!T

;
ð2Þ

Precision of Bottom crashed traces

P ðBÞ ¼ NB!B
NB!B þNT!B

: ð3Þ

. Recall: the number of traces correctly classified as
top or bottom traces (NT!T or NB!B) over the
number of actual top or bottom stack traces.

Top traces recall RðT Þ ¼ NT!T
NT!T þNT!B

; ð4Þ

Bottom traces recall RðBÞ ¼ NB!B
NB!B þNB!T

: ð5Þ

. F-score: a composite measure of precision P ð�Þ and
recall Rð�Þ for each class (top and bottom).

F score F ð�Þ ¼ 2� P ð�Þ �Rð�Þ
P ð�Þ þRð�Þ : ð6Þ

5.3 Prediction Results

This section reports our prediction results. First, we applied

our approach to two subsequent versions. For example, we

trained a model with Firefox and then applied the model to

a subsequent version of Firefox. Second, we applied our

approach for cross projects. We trained a model on Firefox

and applied it to Thunderbird and vice versa. Table 5 shows

KIM ET AL.: WHICH CRASHES SHOULD I FIX FIRST?: PREDICTING TOP CRASHES AT AN EARLY STAGE TO PRIORITIZE DEBUGGING... 439

TABLE 5
Prediction Results

Experiments were conducted for four subjects: two same-project subjects and two cross-project subjects. For each subject, Naive Bayes, NB with
feature selection, multilayer perceptron, and MLP with FS were used to classify top and bottom crashes. Four criteria were measured: accuracy,
precision, recall, and F-score. In terms of accuracy, MLP outperformed Naive Bayes except for the fourth subject, and MLP with FS outperformed
MLP and Naive Bayes for all subjects.

the overall results. These results may answer RQ1, 2, and 3.
For more details (i.e., predictive power of individual feature
groups), see Section 5.5.

For the subsequent versions prediction, our approach
predicted top or bottom crashes with > 75 percent accuracy,
which is sufficiently high to be useful in practice. Note that the
accuracy of a random guess would be around 50 percent since
our testing sets were evenly distributed, as shown in Table 5.
In terms of top-crash precision, the accuracy of our model was
around 90 percent for Thunderbird and 75 percent for Firefox.
Overall, we believe our approach is effective and accurate at
identifying top crashes as soon as a new crash report arrives.

For the cross-project prediction, the accuracy was around
70 percent, which is slightly lower than that of the
subsequent version prediction. However, an accuracy of
70 percent is still considerably better than that of a random
prediction. These results suggest that our trained prediction
model can be applied to new projects. For example, suppose
that the Mozilla group releases a new product. It is possible
to predict the new product’s crashes as top or bottom using
our prediction model trained from Firefox crashes.

MLP mostly outperformed Naive Bayes. We obtained the
best results when we used MLP with feature selection. This
implies that using the appropriate combinations of features
increased the prediction accuracy. We discuss the predic-
tive power of various training data sizes (Section 5.4), and
for each feature and feature groups in Section 5.5.

5.4 Size of Training Data

In this experiment, we evaluate the impact of training set
size to measure the necessary training data size (i.e., the
number of crash instances represented in feature vectors
described in Section 4.3) for yielding a reasonable predic-
tion accuracy (around 70 percent) [43] (RQ4). We trained
our prediction model using various training set sizes and

measured the accuracy. Figs. 10 and 11 show the prediction

accuracy with various sizes of training data. We also used

different feature groups, history, SNA, CM, and all to

measure the accuracy.
In the case of Firefox (Fig. 10), the accuracy jittered when

our model was trained with less than 200 training data.

However, after 250 training data, the results stabilized and

reached a reasonable accuracy. Similarly, the accuracy for

Thunderbird (Fig. 11) settled after 150 training data.

5.5 Feature Sensitivity Analysis

In this section, we measure and discuss the sensitivity

(predictive power) of feature groups and individual

features (RQ1, 2, 3, and 5).
To measure the predictive power of each feature group,

we trained our prediction model with three different feature

groups: history, CM, and SNA (as described in Section 4.2;
these feature groups had 10, 28, and five features,

respectively). The results are shown in Figs. 10 and 11.
In the case of Firefox, CM features outperformed the

other feature groups. They were more than 70 percent
accurate and close to the accuracy of all features (for some
training data sizes, they even outperformed the accuracy of
all features together). The history feature group showed
around 65 percent accuracy after 200 training instances.
However, the SNA feature group performed worse than
random guess.

In the case of Thunderbird, all three types of feature
groups showed more than 60 percent accuracy, and the
history and SNA feature groups showed more than
70 percent accuracy after 600 training instances. The history
feature group even outperformed the case in which all
features were used.

440 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 3, MAY/JUNE 2011

Fig. 10. Prediction accuracy using various training data sizes (Fire-
fox 3.0.10 training on Firefox 3.0.9). This graph shows the accuracy on
the basis of different feature groups: social network analysis, complexity
metrics, history, and all. At the beginning, the accuracy jitters, but it is
stabilized after 250 training instances.

Fig. 11. Prediction accuracy using various training data sizes (Thunder-
bird 3.0a2 training on Thunderbird 3.0a1). This graph shows accuracy
on the basis of different feature groups, the same as Fig. 10. This also
has some jitters, but the accuracy stabilized after 150 training instances.
Compared to Fig. 10, the accuracy for all four feature groups increased
gradually.

These results show that the three individual feature
groups are good predictors for identifying top crashes, as
we assumed in Section 4.2. The accuracy of the history
feature group indicates that methods in the top stack trace
crash again, as we hypothesized. Although this feature
group cannot be applied to cross-project prediction, it is
useful when a project continually releases subsequent
versions and these versions provide new crashes.

The CM features were also good predictors for both
projects. Our hypothesis, in which the complexity of
methods affects the top-crash prediction, was verified by
the result for the complexity features. In addition, these
features can be applied to cross-project cases, while history
features cannot.

Contrary to our hypothesis, SNA features did not per-
form well for Firefox. This low accuracy can be interpreted
as the fact that two subsequent versions of Firefox do not
have much correlation for the prediction of top crashes in
terms of SNA features. In spite of this result, SNA features
are good predictors, as shown in the Thunderbird case. They
can also be applied to cross-project prediction.

For individual features, we measured the information
gain ratio [33], [34], [35] of individual features and ranked
the features on the basis of the information gain ratio
values. The information gain ratio represents how well a
feature distinguishes instances. A feature with a high
information gain ratio classifies instances more efficiently.

Figs. 12 and 13 show the top-20 features. Firefox and

Thunderbird shared many top features. For example,

closeness centrality [26] (one of SNA features) had the

highest information gain ratio. This verified our assumption

in Section 4.2; methods close to the center of call graphs are

more likely to be called often and thus be the top crashes.

Similar results have also been shown in the literature on

bug prediction [59].
Cyclomatic complexity [41] is the second sensitive

feature for Firefox and Thunderbird. Cyclomatic complexity

represents the number of linearly independent cycles in a

method. As we assumed in Section 4.2, this shows that

method complexity is an important indicator for determin-

ing top and bottom crashes.
In addition to closeness centrality and cyclomatic

complexity, two history features—“number of crash occur-

rences” and “top count”—were highly predictive features.

This confirmed that methods in the top-crash traces for the

previous version are more likely to reappear in top traces of

the subsequent version, as we hypothesized.

KIM ET AL.: WHICH CRASHES SHOULD I FIX FIRST?: PREDICTING TOP CRASHES AT AN EARLY STAGE TO PRIORITIZE DEBUGGING... 441

Fig. 12. Normalized predictive power of features established with
information gain analysis (Firefox 3.0.9). Closeness and cyclomatic
complexity features had the best information gain ratio values. In
addition, two history features—number of crash occurrences and
number of top class methods—had high information gain ratio values.
This shows that complex methods, central methods, and top-crash
methods in the past version are more likely to be top crashes.

Fig. 13. Normalized predictive power of features established with
information gain analysis (Thunderbird 3.0a1). Similarly to the results in
Fig. 12, the closeness, cyclomatic complexity, and two history features
had the highest information gain ratio values. This also shows that
complex methods, central methods, and top-crash methods in the past
version were more likely to be top crashes. The number of comment
lines also had a high information gain ratio value. This may imply that
developers tend to insert more comments in complex methods.

6 DISCUSSION

This section discusses some issues pertaining to our
approach and identifies threats to the validity of our
experiments.

6.1 High-Profiled Paths

It is possible to profile the path frequency of a program [21]
and then predict top crashes using such profile information
[11]. We can assume that so-called hot paths crash more
frequently than other paths. However, not all hot paths
necessarily result in crashes. Instead, we can leverage hot
path information to predict top crashes. The SNA features
indirectly measure the path frequency. The use of profiling
techniques for our prediction model remains as future work.

6.2 Noncrashing Bugs Frequency Prediction

Our approach is not limited to only crashing bugs. In
principle, it can be applied in any situation in which 1) the
system autonomously detects a failure and 2) a stack trace is
available at this point. The failures reported by an
automatic problem reporting system are mostly abnormal
termination (i.e., a crash), but such a termination is not
necessary for our approach if the context information such
as stack traces is provided.

6.3 How Many Reports Do We Need to Fix a Crash?

Our approach enables developers to identify and fix top
crashes with just a few crash reports. This begs the question:
Do a few crash reports contain sufficient information to fix
the crash? Obviously, if developers had access to more
crash reports, it would be useful. However, similarly to the
case of duplicate bug reports [8], most crash reports are
duplicates and do not contribute any new information. On
the basis of our manual inspections, around 10 to 50 stack
traces (i.e., crash reports) for each crash are sufficient for
locating and fixing faults.

6.4 Other Approaches to Crash Prioritization

We can suppose that developers use other approaches to
crash prioritization. There are three possible approaches:
first-come-first-served (FCFS), easier-crash-first, and criti-
cal-crash-first. FCFS considers early reported crashes first
and is simple to apply. However, early reported crashes do
not necessarily indicate that these crashes are more
important or frequent than other crashes.

Both easier-crash-first and critical-crash-first approaches
are subjective. One developer may consider a specific crash
first because he or she has expertise with the module where
the crash occurred and thinks it can be readily fixed or it
may cause critical consequences. However, these ap-
proaches are subjective and do not guarantee a reduction
in the number of crash victims because easiness and
criticality do not imply that the crash is more likely to occur.

Although some developers use the abovementioned
approaches, sometimes some developers may randomly
choose crashes to fix. However, they should use our
approach if their objective is to reduce the number of crash
victims at an early stage.

6.5 Additional Features

The three feature groups that we used might not cover all
aspects of crashes. We could add more features to improve
the accuracy of top-crash prediction, including crash

reason, user comments, and developer’s maturity. How-

ever, based on our observations, more than 90 percent of

crashes are caused by memory access violations and only a

very few users (less than 5 percent) submit comments

about crashes. In addition, it is difficult to objectively

measure a developer’s experience with the module where

the crash occurs.

6.6 Variance Effect

In Section 5.4, we varied the amount of training data to test

our technique. The result showed that it requires only a

small training set to yield reasonable prediction accuracy.

However, a variance effect could be introduced if we

(randomly) select training data of a certain size from the

entire training set. This variance effect might affect the

accuracy of our technique in either a positive or negative

way. If this accuracy largely varies due to the variance

effect, we might not be able to claim that our technique

yields reasonable prediction accuracy. To verify this

hypothesis, we conducted a variance test in which

250 training instances were randomly selected and used

for training a machine learner (MLP). We tested the learner

442 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 3, MAY/JUNE 2011

Fig. 14. Variance test results: (a) The variance test result of Firefox. Two
hundred fifty training instances are randomly selected and tested on the
next version of Firefox. We repeated the same test 20 times. (b) The
result of the same test for Thunderbird. Each box plot shows the variance
of top/bottom F-score and accuracy.

using the next version of Firefox and Thunderbird, and
repeated 20 tests for each product.

The results of the variance test are shown in Fig. 14.
These box plots include the F-score values of top and
bottom crashes, and the accuracy for Firefox (Fig. 14a) and
Thunderbird (Fig. 14b). In the case of Firefox, the minimum,
maximum, mean, and standard deviation values of accu-
racy are 66.67, 77.33, 71.81, and 3.12, respectively. Those of
the F-scores are 73.8, 80.4, 77.28, and 1.90, respectively, for
the top crashes, and 53.1, 73.1, 62.81, and 5.8, respectively,
for the bottom crashes. In the case of Thunderbird, those of
accuracy and F-scores for top and bottom crashes are 63.60,
71.73, 68.0, and 2.33; 57.3 68.0, 63.04, and 3.53; and 67.5, 75.6,
71,25, and 2.03, respectively.

This result implies that our technique might not suffer
from the variance effect. Standard deviation values indicate
that its average variation was less than 6 percent even when
we randomly selected a subset of training instances. We
consider that there was no significant difference between
the test results.

To statistically verify our claim, we conducted the Mann-
Whitney test on the results of each product. Twenty
variance test results of each product were divided into
two groups: the first 10 results and the remainder. The
hypothesis of this test was as follows:

. Null Hypothesis, H0. Given the test results, there is
no significant difference between the two groups in
terms of accuracy and F-score.

. Alternative Hypothesis, H1. Given the test results,
there is a significant difference between two groups
in terms of accuracy and F-score.

We calculated the p-values in terms of F-scores and
accuracy, as shown in Table 6. In the case of Firefox, the
p-values of the top and bottom F-scores and accuracy were
0.13, 0.1, and 0.08, respectively. Those of Thunderbird were
0.68, 0.40, and 0.85, respectively. On the basis of these
p-values, we failed to reject the null hypothesis. Therefore,
we observed that there was no significant variance effect for
either Firefox or Thunderbird.

6.7 Limitations

In the following, we present restrictions and limitations of
our technique.

. The occurrence of top crashes. To be predicted, a
top crash needs to occur at least once in the early
product releases. In practice, however, some of the
top crashes might only occur after product release.
As shown in Section 3, this was the case for four
top-20 crashes of Firefox 3.5. For these four crashes,
our technique was less helpful.

There are three main reasons why a crash only
occurs after product release. First, the testing effort

spent at the early stage is insufficient. This was
probably not the case for Mozilla, but it might happen
to smaller development teams under strict resource
constraints. For them, recent advances in automated
testing techniques, such as automated fuzz testing
[22], can improve the chance of exposing a top crash at
an early stage. Second, the crash can only be triggered
in a certain configuration which is not enabled until
product release. One of the four Firefox 3.5 top crashes
belonged to this case: This crash could not occur in
alpha testing because a DEBUG flag masked the crash
point. Third, the crash is due to an inadequately tested
code patch made before product release. The remain-
ing three Firefox 3.5 top crashes belonged to this case.
For two of them, the crash points were exactly located
at the lines where developers made hasty changes
before release. To avoid such a situation, the devel-
opment team might introduce a policy mandating a
“freeze” period before product release.

. Training instances. Because our technique trains on
past crash reports, the quantity and quality of these
training instances are of concern:

- First, there might not be a sufficient amount of
training data in practice. However, as we
illustrate in Section 5.4, an effective prediction
does not require a large number of training
instances. Our finding was consistent with recent
work by Menzies et al. [43], who showed that as
few as 50 instances yield as much information as
larger training sets. Given this observation, it is
likely that the number requirement for training
instances can be met, especially if an automatic
crash reporting system has been deployed.

- Second, some of the training instances might not
be helpful to top-crash prediction. One main
reason might be that they were collected from a
very outdated version of the software, which
differed significantly from the present version.
The use of information in these instances does
not contribute to the prediction and sometimes
even leads to a worse result. This phenomenon is
referred to as “concept drift” by Ekanayake et al.
[18]. For this reason, the general guideline of
selecting training instances is to prefer those
collected from versions closer to the present
version. In the future, we plan to conduct further
study to investigate concept drift in the context
of top-crash prediction.

- Finally, one particular scenario is that the
software is undergoing a first-time release, with
no history data available. In this case, it is
difficult to apply our technique because it is not
a trivial task to create a training set. We are
currently investigating the possibility of cross-
project prediction.

. Crash prevention. The use of some techniques that
aim at preventing crashes from happening might
potentially limit the applicability of our technique.
For example, Demsky and Rinard [17] introduced a
technique that automatically repairs inconsistency in

KIM ET AL.: WHICH CRASHES SHOULD I FIX FIRST?: PREDICTING TOP CRASHES AT AN EARLY STAGE TO PRIORITIZE DEBUGGING... 443

TABLE 6
p-Values of the Mann-Whitney Test

data structures. Michail and Xie [44] introduced
another technique for masking GUI errors, particu-
larly crashes. These techniques, however, only tem-
porarily mask the crashes. Ultimately, we still need to
fix the underlying cause of the crash. In addition, our
technique mainly targets early phases of develop-
ment, such as alpha and beta testing, in which such
crash prevention techniques are rarely deployed.

6.8 Threats to Validity

We identify the following threats to validity:

. Examined systems may not be representative.
Crash reports for two systems were examined in
this paper. These systems might represent the
characteristics of a specific group of software
systems such as browsers and e-mail clients. How-
ever, they might not represent other types of
software systems, such data-intensive systems and
operating systems.

. Systems were all open source projects. All systems
examined in this paper were developed as open
source projects. Hence, they may not be representa-
tive of closed-source development.

. The information gain ratio measure may be biased.
We used the information gain ratio to measure the
feature predictive power and identify important
features. However, we only measured individual
feature predictive power, while MLP uses a combi-
nation of features to build a prediction model. The
top individual features shown in Figs. 12 and 13 may
have top predictive power for our prediction model.
In addition, we compute the information gain ratio
using a training set only. However, feature selection
based on the information gain ratio yielded the best
prediction results, as shown in Table 5.

. Some stack traces are partially observable. When a
crash occurs, BreakPad [9] collects stack traces per
thread and identifies the crashing thread. In the
current system, it is impossible to construct an entire
stack trace, including the thread spin information.
Because of this limitation, we only used the partial
stack trace information in the crash thread. How-
ever, using the complete stack trace information may
yield better prediction results.

. Training and test instances may be biased. Although
we evenly sampled crash data from the Mozilla crash
repository, the possibility exists that data can be
biased because some users might not report their
crashes due to concerns about security and privacy.
However, Firefox and Thunderbird’s crash reporting
systems [9] force a user to report crashes unless the
user terminates the system by killing its process.
Moreover, top-crash prediction still provides the
benefit of reducing the number of victims for some
types of (reported) crashes even if the reports
are biased so as to not have other types of crashes
such as security and privacy-related crashes.

7 RELATED WORK

In this section, we briefly review research areas related to

our approach.

7.1 Crash Reports Analyses

Automatic crash reporting facilities have long been inte-
grated into commercial software (e.g., the Dr. Watson system
used by Microsoft [46]). Compared to manually written bug
reports [7], crash reports always contain accurate informa-
tion and require little human effort to submit. However, the
analysis of crash reports can be tedious and time consuming
if done manually because the raw data they contain (e.g., the
heap state and stack frames) are not amenable to human
examination. For this reason, researchers have proposed
many techniques to automate crash report analysis.

The work most closely related to ours is failure clustering,
an approach introduced by Podgurski et al. [51]. Their
technique applies feature selection, clustering, and multi-
variate visualization to group failures with similar causes.
Such a grouping aids developers in prioritizing debugging
efforts because the groups that contain the most failures are
likely to be the most significant. Recently, two research
groups [28], [38] independently proposed improving
clustering accuracy by using automatic fault localization
[29]. All of these failure clustering techniques are post-
mortem analyses, as they suggest what the most common
failures in collected reports are. In contrast, our technique is a
preemptive analysis because it predicts the most common
failures in future reports.

Another issue in crash report analysis is how to fix the
reported crashes. Without tool support, finding the root
cause of the reported crashes can be very challenging. Path
reconstruction techniques have been proposed to address this
issue. For example, Liblit and Aiken [36] introduced a
technique that supports automatic reconstruction of com-
plete execution paths based on partial execution information
such as backtracks and execution profiles. Their technique
analyzes control flow graphs and derives a set of plausible
paths that agree with available information. Manevich et al.
[40] proposed the PSE technique, which improved on Liblit’s
work by incorporating a data flow analysis to reduce
infeasible execution paths. These techniques are especially
important for debugging predicted top crashes because, at
the time of prediction, there are only a small number of crash
reports available to developers.

7.2 Frequency Prediction

Frequency prediction refers to the problem of estimating
how frequently a program entity (e.g., branch, path, function,
or declarative rules) will be exercised in program execution.
This is applicable in many domains such as program
optimization [24] and reliability assessment [4], [50]. Re-
search in this area can be divided into profile-based [20],
program-based [5], and evidence-based [12] approaches.

The profile-based approach samples a few actual execu-
tions of the program and generalizes them to predict other
executions. It has been successfully applied to predict
branch frequency [20]. The profile-based approach requires
a workload generator that is capable of simulating the real-
world usage of the program. Such a workload generator can
be difficult to design.

Unlike the profile-based approach, the program-based
approach relies on source code analysis and does not
require the generation of a realistic workload. Ball and
Larus [5] were among the first to use this approach for

444 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 3, MAY/JUNE 2011

branch frequency prediction purposes. Specifically, they
used a loop analysis to predict branches that control the
iteration of loops and some simple heuristic rules (e.g.,
comparing a pointer with NULL usually fails) to predict
nonloop branches. One limitation of the program-based
approach is that prediction rules have to be derived from
experience. However, currently no such rules have been
observed for crash stacks.

In [12], Calder et al. proposed the evidence-based
approach, which addresses the limitation of the program-
based approach while retaining its benefit. The main idea is to
first learn prediction rules from a corpus of programs, and
then use the learned rules to predict the frequency for new
programs. They applied this approach to predict the branch
frequency. Recently, Buse and Weimer [11] used a similar
approach to predict path frequency. As described in Section 4,
our approach shares the same principle as the evidence-based
approach. However, we considered predicting the crash
frequency, which is different from branch or path frequency.
In addition, we introduced the use of social network metrics
in our predictions. As shown in Figs. 12 and 13, this
contributed to improving the prediction accuracy.

8 CONCLUSION AND FUTURE WORK

There is no reason why developers should have to wait for
crash reports to pile up before knowing where to start. By
learning from past crash reports, we can automatically and
effectively predict whether a new crash report is the first of
many similar ones to come (and hence deserves immediate
attention) or whether it is likely to be an isolated event. By
automatically classifying incoming crash reports, developers
can quickly fix the most pressing problems, increasing
software stability and improving the user’s experience. By
applying our approach on the crash databases of Firefox and
Thunderbird, we found a prediction accuracy of 75-90 percent
despite having learned from only a small number of crash
reports. This approach is fully automated and easily
applicable for any software system where crash data are
collected and aggregated in a central database.

Promising results like these call for action on the research
side as well. In addition to general optimization and
refinement of our approach, our future work will concen-
trate on the following topics:

. Integration into the development process. Predic-
tors like ours would ideally be well integrated into
the development process, suggesting and prioritiz-
ing actions as soon as the first crash report drops in.

. Noncrashing problems. Software failures may not
manifest themselves as a crash—the end result may
be invalid without the operating or runtime system
detecting a problem and, in particular, without a
stack trace characterizing the problem. We want to
investigate which specific runtime features can be
used to predict problem frequency.

. Avoid concept drift. The older a crash report, the
less relevant it may be for the software at hand. We
want to introduce appropriate measures to assign
more weight to recent crash reports.

. Problem topics. Problem reports also contain user’s
comments and other natural language information.
We want to investigate how specific topics
(“printing,” “layout,” etc.) can be identified and
used as additional prediction features.

. Automatic workarounds. Once one knows which
features are associated with a crash, one could feed
back these features to the user, suggesting possible
workarounds (“Printing a page with frames has been
reported by many not to work properly in this version.
Do you want to try printing without frames?”)

. Empirical studies. Finally, crash report databases
offer several opportunities for empirical studies,
answering questions like “Which components crash
most frequently?,” “Which actions are particularly
risky?,” or “How can we work around the most
important crashes?”

More information on our work is available at the project

site: http://seapp.sogang.ac.kr/darkrsw/crash.html.

ACKNOWLEDGMENTS

This research was supported in part by The Ministry of

Knowledge Economy (MKE), Korea, under the Information

Technology Research Center (ITRC) support program

supervised by the National IT Industry Promotion Agency

(NIPA) (NIPA-2010-C1090-1031-0008), in part by the Intelli-

gent Robotics Development Program, one of the Frontier

R&D Programs (also funded by MKE, Korea), and in part by

the Research Grant Council of Hong Kong (Project No.

612108). The authors would like to thank Christopher Van

Der Westhuizen for his helpful ideas on earlier revisions of

this paper, and the associate editor and the anonymous

reviewers for insightful comments on earlier drafts.

REFERENCES

[1] A Challenge for Exterminators, http://www.nytimes.com/2006/
10/09/technology/09vista.html?_r=2&oref=slogin&pagewanted=
print, 2006.

[2] E.N. Adams, “Optimizing Preventive Service of Software Pro-
ducts,” IBM J. Research and Development, vol. 28, no. 1, pp. 2-14,
1984.

[3] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2004.
[4] A. Avritzer, J.P. Ros, and E.J. Weyuker, “Reliability Testing of

Rule-Based Systems,” IEEE Software, vol. 13, no. 5, pp. 76-82, Sept.
1996.

[5] T. Ball and J.R. Larus, “Branch Prediction for Free,” Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation,
pp. 300-313, 1993.

[6] T. Bayes, “An Essay towards Solving a Problem in the Doctrine of
Chances,” Philosophical Trans. Royal Soc. of London, vol. 53, pp. 370-
418, 1763.

[7] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T.
Zimmermann, “What Makes a Good Bug Report?” Proc. 16th ACM
SIGSOFT Int’l Symp. Foundations of Software Eng., pp. 308-318,
2008.

[8] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim,
“Duplicate Bug Reports Considered Harmful . . . Really?” Proc.
24th IEEE Int’l Conf. Software Maintenance, pp. 337-345, Sept./Oct.
2008.

[9] BreakPad, http://code.google.com/p/google-breakpad/, 2009.
[10] Bugzilla@Mozilla, https://bugzilla.mozilla.org/, 2009.
[11] R.P.L. Buse and W. Weimer, “The Road Not Taken: Estimating

Path Execution Frequency Statically,” Proc. IEEE 31st Int’l Conf.
Software Eng., pp. 144-154, 2009.

KIM ET AL.: WHICH CRASHES SHOULD I FIX FIRST?: PREDICTING TOP CRASHES AT AN EARLY STAGE TO PRIORITIZE DEBUGGING... 445

[12] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M.
Mozer, and B. Zorn, “Evidence-Based Static Branch Prediction
Using Machine Learning,” ACM Trans. Software Eng. and
Methodology, vol. 19, no. 1, pp. 188-222, 1997.

[13] J. Cho, H. Garcia-Molina, and L. Page, “Efficient Crawling
through URL Ordering,” Computer Networks and ISDN Systems,
vol. 30, nos. 1-7, pp. 161-172, 1998.

[14] CodeViz, www.skynet.ie/mel/projects/codeviz/, 2009.
[15] Connecting with Customers, http://www.microsoft.com/

mscorp/execmail/2002/10-02customers.mspx, 2006.
[16] Crash Reporter (Mac OS X), http://developer.apple.com/

technotes/tn2004/tn2123.html, 2009.
[17] B. Demsky and M. Rinard, “Automatic Detection and Repair of

Errors in Data Structures,” Proc. 18th Ann. ACM SIGPLAN Conf.
Object-Oriented Programing, Systems, Languages, and Applications,
pp. 78-95, 2003.

[18] J. Ekanayake, J. Tappolet, H.C. Gall, and A. Bernstein, “Tracking
Concept Drift of Software Projects Using Defect Prediction
Quality,” Proc. Sixth IEEE Int’l Working Conf. Mining Software
Repositories, pp. 51-60, 2009.

[19] N.E. Fenton and M. Neil, “Software Metrics: Roadmap,” Proc.
Conf. The Future of Software Eng., pp. 357-370, 2000.

[20] J.A. Fisher and S.M. Freudenberger, “Predicting Conditional
Branch Directions from Previous Runs of a Program,” Proc. Fifth
Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, pp. 85-95, 1992.

[21] GNU Binutils, http://www.gnu.org/software/binutils/, 2009.
[22] P. Godefroid et al., “Automated Whitebox Fuzz Testing,” Proc.

Network Distributed Security Symp., 2008.
[23] K. Goseva-Popstojanova and M. Hamill, “Architecture-Based

Software Reliability: Why Only a Few Parameters Matter?” Proc.
31st Ann. Int’l Computer Software and Applications Conf., pp. 423-
430, 2007.

[24] R. Gupta, E. Mehofer, and Y. Zhang, Profile-Guided Compiler
Optimizations, pp. 143-174. CRC Press, 2002.

[25] M. Hamill and K. Goseva-Popstojanova, “Common Trends in
Software Fault and Failure Data,” IEEE Trans. Software Eng.,
vol. 35, no. 4, pp. 484-496, July/Aug. 2009.

[26] R.A. Hanneman and M. Riddle, Introduction to Social Network
Methods. Univ. of California, 2005.

[27] J. Hopfield, “Neural Networks and Physical Systems with
Emergent Collective Computational Abilities,” Proc. Nat’l Academy
of Sciences USA, vol. 79, pp. 2554-2558, 1982.

[28] J.A. Jones, J.F. Bowring, and M. Harrold, “Debugging in Parallel,”
Proc. Int’l Symp. Software Testing and Analysis, pp. 16-26, 2007.

[29] J.A. Jones and M.J. Harrold, “Empirical Evaluation of the
Tarantula Automatic Fault-Localization Technique,” Proc. 20th
IEEE/ACM Int’l Conf. Automated Software Eng., pp. 273-282, 2005.

[30] Jung, http://jung.sourceforge.net, 2009.
[31] S. Kim, E.J. Whitehead Jr., and Y. Zhang, “Classifying Software

Changes: Clean or Buggy?” IEEE Trans. Software Eng., vol. 34,
no. 2, pp. 181-196, Mar./Apr. 2008.

[32] S. Kim, T. Zimmermann, E.J. Whitehead Jr., and A. Zeller,
“Predicting Faults from Cached History,” Proc. 29th Int’l Conf.
Software Eng., pp. 489-498, 2007.

[33] S. Kullback, “The Kullback-Leibler Distance,” The Am. Statistician,
vol. 41, pp. 340-341, 1987.

[34] S. Kullback and R.A. Leibler, “On Information and Sufficiency,”
The Annals of Math. Statistics, vol. 22, no. 1, pp. 79-86, 1951.

[35] S. Kullback, Information Theory and Statistics. John Wiley and Sons,
1959.

[36] B. Liblit and A. Aiken, “Building a Better Backtrace: Techniques
for Postmortem Program Analysis,” technical report, Univ. of
California, Berkeley, 2002.

[37] R.J.A. Little and D.B. Rubin, Statistical Analysis with Missing Data.
Wiley, 2002.

[38] C. Liu and J.W. Han, “Failure Proximity: A Fault Localization-
Based Approach,” Proc. 14th ACM SIGSOFT Int’l Symp. Founda-
tions of Software Eng., pp. 46-56, 2006.

[39] L. Lopez, J.M. Gonzalez-Barahona, and G. Robles, “Applying
Social Network Analysis to the Information in CVS Repositories,”
Proc. First Int’l Workshop Mining Software Repositories, 2004.

[40] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang, “PSE:
Explaining Program Failures via Postmortem Static Analysis,”
Proc. 12th ACM SIGSOFT 12th Int’l Symp. Foundations of Software
Eng., pp. 63-72, 2004.

[41] T.J. McCabe, “A Complexity Measure,” Proc. Second Int’l Conf.
Software Eng., p. 407, 1976.

[42] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting
Failures with Developer Networks and Social Network Analysis,”
Proc. 16th ACM SIGSOFT Int’l Symp. Foundations of Software Eng.,
pp. 13-23, 2008.

[43] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang,
“Implications of Ceiling Effects in Defect Predictors,” Proc. Fourth
Int’l Workshop Predictor Models in Software Eng., pp. 47-54, 2008.

[44] A. Michail and T. Xie, “Helping Users Avoid Bugs in GUI
Applications,” Proc. 27th Int’l Conf. Software Eng., pp. 107-116,
2005.

[45] D. Michie, D.J. Spiegelhalter, and C.C. Taylor, Machine Learning,
Neural and Statistical Classification. Prentice Hall, 1994.

[46] Microsoft Online Crash Analysis, http://oca.microsoft.com/en/
dcp20.asp, 2009.

[47] A. Miller, Subset Selection in Regression. Chapman & Hall/CRC,
2002.

[48] D. Montgomery, G. Runger, and N. Hubele, Engineering Statistics.
Wiley, 2001.

[49] Mozilla Crash Report, http://crash-stats.mozilla.com/, 2009.
[50] J.C. Munson and S. Elbaum, “Software Reliability as a Function of

User Execution Patterns,” Proc. 32nd Ann. Hawaii Int’l Conf. System
Sciences, vol. 8, p. 8004, 1999.

[51] A. Podgurski, D. Leon, P.A. Francis, W. Masri, M. Minch, J. Sun,
and B. Wang, “Automated Support for Classifying Software
Failure Reports,” Proc. 25th Int’l Conf. Software Eng., pp. 465-475,
2003.

[52] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning
Internal Representation by Error Propagation,” Parallel Distributed
Processing: Exploration in the Microstructures of Cognition, pp. 318-
362, MIT Press, 1986.

[53] S. Shivaji, E.J.W. Jr., R. Akella, and S. Kim, “Reducing Features to
Improve Classification-Based Bug Prediction,” Proc. 24th IEEE/
ACM Int’l Conf. Automated Software Eng., Nov. 2009.

[54] Socorro, http://code.google.com/p/socorro/, 2009.
[55] Understand for C++, http://www.scitools.com/products/

understand/, 2009.
[56] Weka, http://www.cs.waikato.ac.nz/ml/weka/, 2009.
[57] M.R. Woodward, M.A. Hennell, and D. Hedley, “A Measure of

Control Flow Complexity in Program Text,” IEEE Trans. Software
Eng., vol. 5, no. 1, pp. 45-50, Jan. 1979.

[58] A. Zeller, “Isolating Cause-Effect Chains from Computer Pro-
grams,” Proc. 10th ACM SIGSOFT Symp. Foundations of Software
Eng., pp. 1-10, 2002.

[59] T. Zimmermann and N. Nagappan, “Predicting Defects Using
Network Analysis on Dependency Graphs,” Proc. 30th Int’l Conf.
Software Eng., pp. 531-540, 2008.

Dongsun Kim received the BEng and MS
degrees in computer science from Sogang
University, Seoul, Korea, in 2003 and 2005,
respectively. He is currently working toward the
PhD degree at Sogang University. His research
interests include dynamic software architecture,
self-adaptive software, mining software reposi-
tories, and source code analysis. He is a member
of the IEEE and the IEEE Computer Society.

Xinming Wang received the BEng degree from
Zhongshan University of China in 2002 and the
MEng degree from the Chinese Academy of
Sciences in 2005. He is currently working toward
the PhD degree at the Hong Kong University of
Science and Technology. His research interests
include software testing and analysis, program
debugging, and software mining. He is a student
member of the IEEE and the IEEE Computer
Society.

446 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 3, MAY/JUNE 2011

Sunghun Kim received the PhD degree from the
Computer Science Department at the University
of California, Santa Cruz in 2006. He is an
assistant professor of computer science at the
Hong Kong University of Science and Technol-
ogy. He was a postdoctoral associate at the
Massachusetts Institute of Technology and a
member of the Program Analysis Group. He was
a chief technical officer (CTO), and led a 25-
person team for six years at Nara Vision Co. Ltd.,

a leading Internet software company in Korea. His core research area is
software engineering, focusing on software evolution, program analysis,
and empirical studies. He is a member of the IEEE and the IEEE
Computer Society.

Andreas Zeller received the PhD degree in
computer science from TU Braunschweig, Ger-
many, in 1999, and has served on the Faculty of
Saarland University since 2001. He is a profes-
sor of software engineering at Saarland Uni-
versity in Saarbrücken, Germany. His research
interest lies in the analysis of programs and
processes, especially the analysis of why
programs fail to work as they should. In 2009,
he received the ACM SIGSOFT Impact Paper

Award for his work on delta debugging as the most influential software
engineering paper of 1999. His book Why Programs Fail received the
2005 Software Productivity Award as one of the three most productivity-
boosting books of the year. He has served on the editorial boards of the
ACM Transactions on Software Engineering and Methodology and
Springer Journal on Empirical Software Engineering. He is a member of
the IEEE and the IEEE Computer Society.

S.C. Cheung received the MSc and PhD
degrees in computing from Imperial College
London. He is a faculty member in the Depart-
ment of Computer Science and Engineering at
the Hong Kong University of Science and
Technology. He actively participates in the
research communities of software engineering
and service-oriented computing. He has served
on the editorial board of the IEEE Transactions
on Software Engineering (TSE), and the Journal

of Computer Science and Technology (JCST). His research interests
include context-aware computing, service-oriented computing, software
testing, fault localization, RFID, and cyber-physical systems. He is a
senior member of the IEEE and a member of the IEEE Computer
Society.

Sooyong Park received the Bachelor of En-
gineering degree in computer science from
Sogang University, Seoul, in 1986, the Master
of Science degree in computer science from
Florida State University in 1988, and the PhD
degree in information technology with a major in
software engineering from George Mason Uni-
versity in 1995. He is a professor in the
Computer Science Department at Sogang Uni-
versity and the director of the Requirements and

Validation Engineering Center that is supported by the Korean Ministry
of Knowledge and Economy. During 1996-1998, he served as a senior
software engineer at TRW ISC. He is actively involved in academic
activities, including as president of the Korean Software Engineering
Society, a steering committee member of the Asian-Pacific Software
Engineering Conference, and a guest editor of the Communications of
the ACM December 2006 issue on software product lines. His research
interests include requirements engineering, self-managed software
architecture, and software product-line engineering. He is a member
of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KIM ET AL.: WHICH CRASHES SHOULD I FIX FIRST?: PREDICTING TOP CRASHES AT AN EARLY STAGE TO PRIORITIZE DEBUGGING... 447

