
Partitioning Composite Code Changes to Facilitate
Code Review

Yida Tao and Sunghun Kim
The Hong Kong University of Science and Technology

Department of Computer Science and Engineering

{idagoo, hunkim}@cse.ust.hk

Abstract—Developers expend significant effort on reviewing
source code changes. Hence, the comprehensibility of code
changes directly affects development productivity. Our prior
study has suggested that composite code changes, which mix
multiple development issues together, are typically difficult to
review. Unfortunately, our manual inspection of 453 open source
code changes reveals a non-trivial occurrence (up to 29%) of
such composite changes.

In this paper, we propose a heuristic-based approach to
automatically partition composite changes, such that each sub-
change in the partition is more cohesive and self-contained.
Our quantitative and qualitative evaluation results are promising
in demonstrating the potential benefits of our approach for
facilitating code review of composite code changes.

I. INTRODUCTION

Code review is an important practice in software main-

tenance, and it reportedly takes up to 60% of the software

engineering effort [1], [2]. In modern software development,

code review has become less formal and more lightweight [3],

[4]. Instead of reviewing the entire software system from

scratch, developers are more often required to review only

the incremental code changes [3], [5].

A small change that tackles one single issue (e.g., fixing

one bug) might not be too difficult to review. When multiple

issues are addressed in a single change, however, reviewing

it becomes time-consuming and error-prone since developers

have to figure out which part of the change addresses which

issue [5]. We refer to such code changes that address multiple

development issues as composite changes, as opposed to

atomic changes that address one single issue.

In this paper, we attempt to address the following research

questions regarding the challenges of code review induced by

composite code changes:

• RQ1: Are composite code changes prevalent?

• RQ2: Can we propose an approach to improve the

semantic atomicity of composite code changes?

• RQ3: Can our approach help developers better review

composite code changes?

We first conducted a manual investigation of the occurrence

of composite code changes. Among 453 changes extracted

from the development history of four open source projects —

Ant, Commons Math, Xerces, and JFreeChart, up to 29% and

on average 17% are composite. This nonnegligible proportion

confirms the prevalence of composite changes.

We then propose a heuristic-based approach to improve the

atomicity of composite code changes. Our approach leverages

program slicing [6] to identify semantically dependent changes

and pattern matching to identify logically related changes. Re-

lated changes are then merged together and isolated from other

non-related changes. In this way, a composite change can be

partitioned into a set of change-slices, each is more cohesive

and self-contained in terms of the issue being addressed.

We applied our approach to the 78 composite changes

identified from our manual investigation. In the evaluation,

69% of them were automatically partitioned the same way

as humans manually did. We further conducted a comparative

user study to explore the value of change partitioning for code

review. Results showed that within a similar period of time,

participants understood partitioned changes significantly better

than the original composite ones.

In summary, this paper makes the following contributions:

• We provide empirical evidence of the prevalence of

composite changes in software evolution.

• We propose an approach to automatically partition com-

posite changes.

• We conduct a user study to illustrate how the proposed

change-partition approach facilitates code review.

The remainder of this paper is organized as follows. Sec-

tion II motivates our work with manual inspections of com-

posite changes. Section III introduces our change-partition

approach, followed by an evaluation in Section IV. Section V

describes our user study. Section VI discusses future improve-

ments and potential applications of our approach. Section VII

reports threats to validity. Section VIII presents related work

and Section IX concludes the paper.

II. THE PROBLEM OF COMPOSITE CODE CHANGES

A. Occurrence

To investigate the occurrence of composite code changes

(RQ1), we manually inspected changes from four open source

projects: Ant, Commons Math, Xerces, and JFreeChart. Ant

is a tool for automating software build process. Commons

Math is a library of mathematics and statistics components.

Xerces is a library for parsing and manipulating XML while

JFreeChart is a library for creating various charts. The size of

these projects ranges from small to medium.

2015 12th Working Conference on Mining Software Repositories

978-0-7695-5594-2/15 $31.00 © 2015 IEEE

DOI 10.1109/MSR.2015.24

180

TABLE I: Study subjects and their total number of revisions in the observed time period. The fourth column shows the

number of revisions that change at least two lines of code. We use these selected revisions for our manual inspection and later

experiments. The fifth column shows the average changed lines of code (cLOC) per revision, while cLOC is the sum of added,

modified, and deleted lines of code in a revision. The last column shows the average number of changed files per revision.

Time period Total revisions Selected revisions Avg. cLOC per revision Avg. files per revision
Ant 2010-04-27 ∼ 2012-03-05 503 137 26.1 2.0
Commons Math 2011-11-28 ∼ 2012-04-12 331 107 84.7 3.5
Xerces 2008-11-03 ∼ 2012-03-13 341 116 63.6 3.0
JFreeChart 2008-07-02 ∼ 2010-03-30 301 93 144.9 4.1

92%

7%

1%
Ant

82%

12%

6%

Commons Math

82%

13%
5%

Xerces

71%

18%

11%

JFreeChart

1 issue

2 issues

> 2 issues

Fig. 1: Percentage of code changes that address one, two, or more than two development issues.

From each project’s SVN repository, we checked out revi-

sions (i.e., changes) that have at least two modified source code

lines, since it is pointless to partition a change if it had changed

only one line of code. As shown in Table I, 453 revisions from

these four projects were finally inspected. We inspected the

commit log written by developers and manually marked the

number of issues addressed in each revision. For example, the

commit log of Commons Math revision 990792 suggests that

this revision addresses three issues: MATH-394, MATH-397,

and MATH-404 (Figure 2). Specifically, MATH-394 removes

duplicate code, MATH-397 handles inconsistencies between

two packages, and MATH-404 fixes an interface bug. We also

manually inspected the source code of revisions when their

commit logs were not clear.

Figure 1 shows the manual inspection results. The majority

of revisions (71% ∼ 92%) are atomic, that is, they address

only one development issue. Yet, 78 (17%) and up to 29%

(JFreeChart) of the revisions are composite changes addressing

more than one issue.

B. Difficulty in Code Review and Maintenance

Developers sometimes use “chunky changes” or even “code

bombs”1 to describe changes that touch many places and bun-

dle various unrelated changes together. One of their primary

complaints is that “. . . some changes are combined with other
changes (e.g., multiple bug fixes). It is hard and error-prone
to figure out whether a specific change is related to one bug
or another” [5]. For the same reason, code reviewers typically

prefer a clear separation of a change if it addresses multiple

issues. For example, a code reviewer commented on Gson

1http://darkforge.blogspot.hk/2010/02/code-bomb-or-newbie-with-big-
ideas.html

Commit log (Commons Math, revision 990792)

Fig. 2: The commit log of Commons Math revision 990792.

(Developer’s name masked) added a comment – 13/Dec/09 20:17

(Developer’s name masked) 2010-10-25 10:20:46 EDT Comment 20

Fig. 3: Review comments on the patches for issues Xerces-

1407 and Eclipse-86576. Both patches were rejected since the

code reviewers required the removal of unrelated changes from

the submitted patches.

revision 1154 saying “I would have preferred to have two dif-
ferent commits: one for adding the new getFieldNamingPolicy
method, and another for allowing overriding of primitives.”2

Violations of this recommended practice often result in the

change being rejected for integration, as shown in Figure 3.

In the next section, we propose an approach to alleviate this

issue, by partitioning a composite code change so that each

sub-change in the partition is more semantically cohesive.

2https://code.google.com/p/google-gson/source/detail?r=1154

181

A composite change

A set of changed lines

Formatting

Dependency

Pattern matching
Change-slices

Fig. 4: A composite change is represented by a set of changed

lines. Three heuristics are used to identify related lines and

merge them into change-slices.

RQ1: We observed 78 out of 453 (17%) code changes

to be composite. For each project, from 8% up to 29%

code changes are composite.

III. APPROACH

We present the problem statement of change partition in this

section. We then detail our partition approach following the

overview of Figure 4 and introduce the implementation.

A. The Change Partitioning Problem

The problem of change partitioning is modeled as follows.

Input: A program change C, which is a set of deleted,

modified, and added source code lines.

Output: The partition P of the set C. More formally,

P is a division of C into non-empty, non-overlapping, and

collectively exhaustive subsets (S).

• ∀S ∈ P, S �= ∅
• ∀i�=jSi, Sj ∈ P, Si ∩ Sj = ∅
•

⋃
S∈P S = C

We use the term change-slice to refer to such a subset of C.

A change-slice consists of only changed lines that are related,

which is defined next.

B. Identifying Related Changes

We consider two changed code lines related if 1) both are

formatting-only changes; or 2) they are semantically related

for having static dependencies, or 3) they are logically related

for having similar change patterns. We detail these heuristics

as below.

Formatting-only changes: Developers format code for

better readability. However, when formatting is performed

together with bug-fixes or new feature implementations, code

changes become composite. Hence, we isolate formatting-only

changes into one single change-slice.

Changes with static dependencies: Program slicing refers

to the computation of program-slice, which is the part of a

program that potentially affects the value at a given program

point [6]. We use program slicing to identify statically de-

pendent lines that are likely to address the same issue. This

assumption is similar to several previous studies [7], [8], [9],

static double[] loadExpIntA() { static double[] loadExpIntA() {

 return EXP_INT_A; return EXP_INT_A.clone();

} }

static double[] loadExpIntB() { static double[] loadExpIntB() {

 return EXP_INT_B; return EXP_INT_B.clone();

} }

static double[] loadExpFracA() { static double[] loadExpFracA() {

 return EXP_FRAC_A; return EXP_FRAC_A.clone();

} }

static double[] loadExpFracB() { static double[] loadExpFracB() {

 return EXP_FRAC_B; return EXP_FRAC_B.clone();

} }

static double[][] loadLnMant() { static double[][] loadLnMant() {

 return LN_MANT; return LN_MANT.clone();

} }

Fig. 5: Commons Math revision 1235784. The five highlighted

statements, although not statically dependent, are changed in

the same way and serve one single purpose.

[10], which leveraged program slicing to isolate consistent

concerns.

Changes with similar patterns: Some code changes are

related, even though no static dependency exists between them.

Figure 5 shows an example, Commons Math revision 1235784,

whose commit log indicates its single intention is to “protect
array entries against malicious or accidental corruption by
returning a clone.” Accordingly, this revision modifies five

return statements in the same way by invoking clone(). Even

though no static dependency exists between these five state-

ments, they indeed serve one single purpose. Another example

is that multiple methods with similar names are added in a

change. In Commons Math revision 1206475, four overloaded

methods populationVariance are added. JFreeChart revision

1363 adds three methods clearSectionPaints, clearSectionOut-
linePaints, and clearSectionOutlineStrokes. The similarity be-

tween these methods’ names indicates that they are likely

to serve the same purpose, even though they have no static

dependency.

We use pattern matching to identify such logically related

changes. Specifically, two changes are considered similar if

1) they are newly added methods whose names’ similarity is

above a threshold tm, or 2) they have the same change type and

the similarity between their string delta is above a threshold ts.

In Figure 5, all changes have the same type “return statement

update” and the delta for each updated statement is “.clone()”.

C. Partition

Figure 6 shows a sample code change. Using our partition

approach, three change-slices are produced. One change-slice

contains line 5 and 6 in P ′, since two methods with similar

names are added. Another change-slice contains the formatting

changes in line 20–22. The remaining changed lines form the

third change-slice, since line 11 and 12 in P are statically

182

10 int x = 0;
11 - x = 3;
12 ^ y = foo(x);

20 ^ if(k == 1){
21 ^ return obj;
22 }

10 int x = 0;

11 ^ y = foo(x) + 100;
12 + z = bar(y);
13 + System.out.print(z);

20 ^ if(k == 1)
21 ^ {
22 ^ return obj;
23 }

5 + addComponentX(...);
6 + addComponentY(...);

P P’

Fig. 6: An example of a code change, which includes dele-

tions (-), modifications (∧) and additions (+). This change is

partitioned into three change-slices, shown in three colors.

dependent, while line 12 in P is modified and has static

dependency with the newly added line 12 and 13 in P ′.
Suppose we construct an undirected graph G whose nodes

represent changed lines and edges represent whether two nodes

are related based on our heuristics explained in Section III-B.

Then, the connected components of G can be found and

mapped to each change-slice. In other words, a change C is

partitioned into a set of change-slices exactly the same way

G is divided into a set of connected components.

D. Implementation

We leveraged a code differencing tool called ChangeDis-

tiller [11] to identify formatting changes. ChangeDistiller per-

forms a tree differencing algorithm on source code, which is

represented by Abstract Syntax Tree (AST). Since ChangeDis-

tiller works on a structured representation of the program

(i.e., AST) rather than a flat representation (i.e., textual code)

as Unix diff does, it effectively ignores formatting changes.

Hence, we compared the results computed by Unix diff and

ChangeDistiller. Changed lines that are presented in Unix diff

but not presented in AST diff are considered to be formatting-

only changes.

To identify static dependency between changed lines, we

used the IBM T.J. Watson Libraries for Analysis (WALA) and

specifically its built-in ZeroOneCFA pointer analysis policy

to compute the backward program slice of each changed

line [12].

To identify change patterns in method names and state-

ments, we used the python module difflib, specifically, its Dif-
fer.compare() and get close matches functionalities to com-

pute string delta and match similar strings. The threshold tm
for method name matching and ts for statement delta matching

were set to 0.6 and 0.8, respectively.

IV. EVALUATION

We evaluate our change-partition approach in this section

(RQ2). Section IV-A and IV-B report the quantitative results

and highlight useful examples of change partitioning. Sec-

tion IV-C explains reasons for unsatisfactory partitions.

A. Results

As reported in Section II-A, 78 out of 453 code changes we

observed address multiple development issues. We used these

78 composite changes to build “ground truth”. Since code

semantics are subject to the understanding and interpretation

of human developers, the solution space of partitioning code

changes is potentially infinite. However, our ultimate goal of

partitioning composite changes is to facilitate code review. In

this regard, if a change-partition result of our automatic ap-

proach matched one of the (many) ways humans will partition

the change, then this result can be considered acceptable.

Based on this assumption, three human evaluators, which

included the first author and two external computer science

graduate students, manually partitioned these 78 changes.

Each evaluator independently identified the number of issues

addressed in each change and the corresponding code. Then,

they discussed to establish an agreement on the partitions.

Finally, for each change, we used the manual partition that

was agreed by all three evaluators as “ground truth”.

We then compared partitions of our automatic approach to

the ground truth. An automatic partition is considered to be

acceptable if it exactly matched the manual partition in terms

of the number of change-slices and the content of each change-

slice. Table II reports the evaluation results for each project.

From 53% to 76% and on average 69% of our partition results

are acceptable.

TABLE II: Evaluation results. Among the 78 composite

changes (Section II-A), 54 (69%) were automatically parti-

tioned the same way as human evaluators did.

Acceptable # / Total #
Ant 8 / 11 (72.7%)
Commons Math 10 / 19 (52.6%)
Xerces 16 / 21 (76.2%)
JFreeChart 20 / 27 (74.1%)

Total 54 / 78 (69.2%)

B. Partition Examples

We now highlight a few cases to illustrate how automatic

change partition can potentially help developers’ code review

process.

• Case 1: Highlighting intended fix

JFreeChart revision 1083 touches one file and modifies six

lines of code. According to its commit log, this revision fixes a

bug by modifying the method createCopy to handle an empty

range. Our approach partitions this revision into three change-

slices, as shown in Figure 7. In particular, the second change-

slice contains the intended fix exclusively, which is separated

it from a minor removal of the this keyword in the first change-

slice and a formatting change in the third change-slice.

• Case 2: Isolating inconspicuous but possibly important

changes

Using our approach, JFreeChart revisions 1366 and 1801

are partitioned into three and two change-slices, respectively.

Figure 8 shows one of the change-slices from both revisions

183

1st Change-slice

2nd Change-slice

3rd Change-slice

Fig. 7: JFreeChart revision 1083 is partitioned into three slices.

The second exclusively contains the intended fix.

that contains only one-line change. For revision 1366, a field

is set to true instead of false. For revision 1801, the one-line

change fixes a subtle bug in an incorrect if-condition where a

parenthesis for the “||” operation is missing.

Although both fixes are small, they indeed have a significant

impact on the program behavior. For example, the missing

parenthesis in revision 1801 messes up the operation prece-

dence and flips the if-condition value, which may cause the

program to produce wrong output or even crash. However,

due to its small size, such a crucial fix might be missed by

code reviewers especially when the change is composite or its

commit log is not informative (the commit log for the above

two revisions are both “Synchronised with 1.0.x branch”).

To increase the awareness of such small but critical changes,

automatic partitioning may come in handy by isolating them

from a potentially large and complex composite change.

• Case 3: Revealing suspicious changes

Our approach partitions Ant revision 943068 into two

change-slices. While the first change-slice faithfully matches

the description in the commit log, the second change-slice

looks suspicious (Figure 9). In this change-slice, the parameter

force is renamed as forceOverwrite in the method setForce
(boolean), which is invoked by a newly added method se-
tOverwrite(boolean). The intention here is probably adding a

setter for the field forceOverwrite, but the change seems to

fail on this purpose: the renamed parameter does not really

affect the field assignment at (*). We suspected that force at

the right hand side of the assignment should also be changed

to forceOverwrite.

We searched subsequent revisions for more evidence of our

speculation. As expected, the same developer of this change

fixed the bug later in revision 943070, along with a commit

log saying “wrong assignment after I renamed the parameter.
Unfortunately there doesn’t seem to be a testcase that catches
the error.3” If our approach had been applied in this case,

it might have been much easier for code reviewers to spot

3http://svn.apache.org/viewvc?view=revision&revision=943070

One of the three change-slices from JFreeChart revision 1366

One of the two change-slices from JFreeChart revision 1801

Fig. 8: Inconspicuous but important changes, which are not

mentioned in commit logs but are isolated by our automatic

partitioning.

public void setForce(boolean force) { public void setForce(boolean forceOverwrite) {

 this.forceOverwrite = force; this.forceOverwrite = force; (*)

} }

public void setOverwrite(boolean forceOverwrite) {

 setForce(forceOverwrite);

}

Fig. 9: The second change-slice from Ant revision 943068

reveals an error.

this sneaky error, which passed tests but was isolated as an

individual change-slice.

RQ2: We used our approach to automatically partition

78 composite code changes and 54 (69%) are partitioned

the same way as human evaluators did.

C. Reasons for Unsatisfactory Partitions

We now discuss the reasons why our approach produces

unsatisfactory partitions for the remaining 24 (31%) code

changes. First, our approach may incorrectly partition changes

that address only one single issue. In Commons Math revision

1230907, two methods operateTranspose and isTransposable
are added to “support for transposition of linear operators”.

However, no static dependency exists between these two

methods and the similarity between their names is below the

threshold. As a result, our approach partitions this revision

into two change-slices. Similarly in Commons Math revision

1206655, two statically-independent statements “return (long)
-magnitude” and “return (int) -magnitude” in different meth-

ods are changed to “return -magnitude”, both removing the

unnecessary cast. However, our approach partitions them into

separate change-slices since their delta “(long)” and “(int)”
fail to match. We plan to address this limitation by integrating

advanced rule mining tools such as LSdiff [13] to capture more

complex change patterns.

Second, our approach may fail to partition changes that

address different issues. In JFreeChart revision 1370, the this
keyword is removed in several places, which in fact constitutes

trivial or non-essential modifications [14] that should be

separated from the remaining changes. Our current approach

is unable to detect such non-essential changes. In the future,

we plan to apply DiffCat [14] to isolate non-essential changes

as individual change-slices.

184

TABLE III: Changes used in each session of the user study. This table shows the size of each change and its number of slices

after partitioning. The last two columns present the code review questions for participants and the corresponding information

covered in each question.

Change # files # cLOC # slices Code Review Questions Information

Ant
943068 2 21 2

The commit log for this revision is “deal with read-only dest files
in echo and concat.” Please briefly explain how this is achieved.
Is there any problematic change in this revision? If so, please
explain briefly.

Rationale
Correctness

Se
ss

io
n

1

Xerces
730238 14 22 2

The commit log for this revision is “remove schemaType field.”
Where is this field removed? What is the consequence of this
removal?

Location
Impact

JFreeChart
1366 1 12 3

Please briefly summarize this change.
Rationale

Xerce
779777 11 98 3

There is a similar pattern in this big change. Please briefly
explain this pattern. Is there any change(s) in this revision that
doesn’t match this pattern? If so, please point it out.

Similarity

Difference

JFreeChart
1663 2 29 3

Please briefly describe the issue(s) addressed in this change.
Rationale

Xerces
810237 2 47 3

How many types of validity checkers are added in this change?
Please briefly explain each of them. In addition to adding
validity checkers, does this change address other issue(s) (e.g.,
fixing another bug)? If so, please explain briefly.

Rationale
Behavior

Change # files # cLOC # slices Code Review Questions Information
Math

1210359 2 7 3
Please briefly describe the issue(s) addressed in this change. Rationale

Correctness

Se
ss

io
n

2

Xerces
778245 6 14 2

Please briefly summarize this change.
Rationale

Xerces
890457 4 56 3

This revision changes three files with the suffix “DocumentImpl”
(i.e., HTMLDocumentImpl, WMLDocumentImpl, and Core-
DocumentImpl). What do these changes have in common? In
addition, the file “ElementImpl” is also changed. Does this
change have anything in common with changes in other files?
If so, please explain briefly.

Location
Similarity

Impact

JFreeChart
1576 10 31 3

Please briefly describe the issue(s) addressed in this revision.
Rationale

JFreeChart
1596 11 54 5

There is a similar pattern in this big change. Please briefly
explain this pattern. Is there any change(s) in this revision that
doesn’t match this pattern? If so, please point it out.

Similarity

Difference

JFreeChart
1801 1 64 2

Common types of changes include adaptive (e.g., new feature
implementation), corrective (e.g., bug fix), and perfective (e.g.,
refactoring). What types of changes are involved in this revision?
Please explain briefly.

Rationale
Behavior

In addition, our approach relies on ChangeDistiller’s output.

However, ChangeDistiller tends to produce inaccurate differ-

encing results when changes occur in a small sub-AST (e.g.,

a small if-statement) [11]; consequently, the partition results

can be affected.

V. PRELIMINARY USER STUDY

In this section, we explore whether our change-partition

approach can facilitate code review (RQ3). We conducted a

preliminary user study, in which participants review composite

code changes with or without partitioning and answer a series

of code review questions. Similar to previous studies [15],

[16], [17], we used the time participants spent on the tasks and

the correctness of their answers to quantify their code review

performance. Accordingly, we formulated two null hypotheses

to be tested in our user study:

• H10: Partitioning does not affect the time needed for code

review.

• H20: Partitioning does not affect the correctness of code

review tasks.

The alternative hypotheses we used in the study are:

• H1: Partitioning reduces the time needed for code review.

• H2: Partitioning increases the correctness of code review

tasks.

185

Fig. 10: The screenshot of the user study website.

A. Study Design

Developers typically review a code change by navigating the

list of changed files and viewing each file’s diff. We called this

traditional approach by file and used it as the control treatment.

As the experimental treatment, which we refer to as by slice,

a code change is represented by a list of change-slices.

We employed a balanced experiment design [18] that in-

volved two lab sessions, each comprised a different set of

code review tasks (Section V-B). Study participants were

evenly divided into two groups according to their expertise

(Section V-C). These two groups worked in the first session

under different treatments and worked in the second session

with treatments switched (Table IV). In other words, the same

set of review tasks was completed by the two groups under

different treatments (each column in Table IV) and each group

was exposed to both treatments in different sessions (each row

in Table IV).

TABLE IV: User Study Design.

Session 1 Session 2
(changes 1-6) (changes 7-12)

Group 1 By slice By file
Group 2 By file By slice

B. Code Review Tasks

In Section IV-A, we report that our automatic approach

produces acceptable partitions for 54 out of 78 composite

code changes. As a preliminary investigation of the potential

benefits of change partition, we currently selected only from

these 54 composite changes with acceptable partitions for our

user study. We discuss the potential impact of unsatisfactory

change partitions in Section VI-A.

Since participants were exposed to both treatments, changes

and review tasks in each session should be different in content

but similar in levels of difficulty [19]. In addition, we need

to ensure the appropriate length of the user study, which is

generally suggested to be 60 to 90 minutes or shorter [20]. To

satisfy the above criteria, we first characterized each composite

change by its size, complexity, and number of change-slices

after partitioning. We then selected twelve composite changes

such that each session included six changes with similar

characteristics (Table III).

We conceived code review questions for each of the twelve

changes (Table III) following guidelines suggested by the

literature [5], [21], [13]. We then decided a detailed grading

scheme for these twelve changes based on their commit logs

and the ground truth we established in Section IV-A.

C. Participants

We recruited 18 computer science students to participate

in our user study. Two of them are senior undergraduate

students, 10 are Masters students, and 6 are PhD students.

Prior to the study, we conducted a survey to measure each

participant’s expertise. Specifically, we asked participants to

rate their familiarity with Java, Source Control Management

systems (SCMs) and diff tools on a 5-point Likert scale.

We then split these participants into two groups with similar

expertise.

D. Procedure

For the purpose of this user study, we created a website

that allows participants to review code changes and answer

questions (Figure 10). The website displays basic information

about each change, such as its project name, revision number,

list of changed files, and code review questions. Participants

186

Fig. 11: Boxplot of participants’ correctness and time for

completing all code review tasks under the two different

treatments.

TABLE V: User Study Results.

Correctness Time (mins)
By file By slice By file By slice

mean 7.94 9.40 35.92 40.60
median 7.75 10.5 37.05 39.41
stdev. 2.86 3.71 14.91 15.50

One-tailed Paired-samples t-test (confidence level 95%)
p-value 0.01 0.81

review a change by navigating the list of changed files under

the by file treatment or the list of change-slices under the by
slice treatment. When each file or change-slice is selected, the

website shows its content as a side-by-side diff.

The user study started with a 10-minute introduction, in

which the coordinator described the tasks to complete and

provided a short tutorial on using the website. Participants

then started the first session. The entire study was supervised:

the coordinator was responsible for ensuring correct website

usage, preventing collaboration, and providing clarifications

on task descriptions. Upon the completion of the first session,

participants took a 10-minute break before they proceeded to

the second session. We recorded the time each participant

spent on completing each code review task. Their written

answers were collected at the end of the second session and

graded according to our marking scheme.

E. User Study Results

Figure 11 shows the boxplot of participants’ correctness

of answers and the time they spent on all code review tasks

under the by file and by slice treatments. The corresponding

descriptive statistics are shown in Table V.

The correctness data passed the Kolmogorov-Smirnov

test [22] and Levene’s test [23], indicating that they are nor-

mally distributed and have equal variances. We used the one-

tailed Paired-samples t-test to test hypothesis H20. Table V

shows that the p-value is 0.01<0.05, indicating that H20 can

be rejected in favor of the alternative hypothesis H2. That is,

change-partition significantly increases the correctness of code

review tasks.

Similarly, we tested the time difference between the by
file and by slice treatments. As shown in Table V, the p-

value is 0.81, meaning that we cannot reject H10. In other

words, change-partition does not affect the time needed for

code review. Figure 11 shows that participants even spent a

slightly longer time under the by slice treatment. We conjecture

that such a time increase mainly resulted from participants’

additional learning cost for using the unfamiliar “change-

slices” to review code changes. We further discuss this issue

in Section VI-B.

RQ3: In a similar amount of time, participants answered

code review questions significantly better when the

composite changes under review were partitioned.

VI. DISCUSSIONS

In this section, we discuss the impact of unsatisfactory

partitions and the balance between change-partition’s benefits

and costs. We also envision other potential applications of our

approach.

A. Impact of Unsatisfactory Change Partitions

Section V reports our preliminary user study, in which par-

ticipants given properly partitioned changes conducted more

effective code review compared to those who were given

the original composite changes. To obtain a well-rounded

evaluation on our approach, we plan to conduct a further

user study to evaluate the impact of unsatisfactory change

partitions in code review. Specifically, we plan to add one more

experimental group to our current study design. Participants in

this new experimental group will review code changes that are

“over-partitioned” such that changes addressing only one issue

are partitioned into multiple change-slices.

B. Balancing between Partitioning Costs and Benefits

Our preliminary user study shows that change-partition

can help participants conduct code review more effectively.

However, change-partition also comes with a cost. In addition

to its execution overhead, code reviewers might spend extra

time on getting familiar with the by-slice way of review

(Section V-E). Code reviewers might also be distracted if they

do not agree with the partition results.

For these reasons, how to balance between the costs and

benefits of change-partition becomes a crucial question. One

important variable in addressing this question could be the size

or complexity of code changes, as partition might be more

helpful for reviewing large and complex instead of small and

straightforward code changes. A systematic evaluation of this

assumption, however, remains as future work.

187

C. Potential Applications

In addition to facilitate code review, we further identify the

following potential applications of change partitioning:

Pre-commit inspection: Developers typically double-check

their local changes before commit to reduce the risk of

integration [24]. We expect that change-partition can also aid

this pre-commit inspection. If an about-to-commit change is

partitioned into several change-slices, developers may wonder

why so many change-slices exist and inspect whether irrelevant

changes are accidentally introduced.

Commit assistance: Modern SCMs such as Git allow de-

velopers to commit a part of their changes. However, devel-

opers have to manually select the part to commit, which is

time-consuming and error-prone [5]. If change-partition was

applied in this case, developers could simply select from the

automatically generated change-slices and perform an atomic

commit.

Partial rollback of code changes: Modern SCMs provide a

certain degree of support for developers to undo incorrect or

imperfect code changes and return to a previous clean state.

Nevertheless, the granularity of such support is usually at

commit-level or file-level, meaning that developers can only

undo either the entire changes in a commit/file or nothing

at all. This mechanism may work perfectly when the tar-

get change is atomic and addresses only one single issue.

However, if the change is composite but a developer wants

to undo only a part of it, the current all-or-nothing revert-

mechanism seems insufficient. We envision that our change-

partition approach can be applied here so that developers can

simply specify one or more change-slices to revert.

VII. THREATS TO VALIDITY

We observed 17% code changes of the four projects to be

composite. However, this observation might not be generaliz-

able to other software projects. Yet, we speculate that projects

who embrace code review [24] and the “commit-early-and-

often” practice [25] should have less composite code changes

compared to those who do not.

We considered an automatic partition to be acceptable if

it was exactly the same as the manual partition agreed by

three human evaluators (Section IV-A). There might be other

different partitions that are also acceptable, which, however,

are difficult to enumerate. In addition, we used exact match

instead of partial match in our evaluation. If we gave credits

to an automatic partition that is partially acceptable (e.g., one

of its change-slices exactly matches the manual partition but

the other two of its change-slices are different), our evaluation

results could be different.

The sizes of the twelve code changes used in our user study

are small to medium, with 1 to 14 files and on average 38

changed lines of code. With these changes, we observed that

participants answered code review questions more correctly on

partitioned changes but with slightly longer time. However,

this result may not generalize to larger code changes. As

discussed in Section VI-B, the size and complexity of code

changes could have affected the benefits (e.g., correctness) and

costs (e.g., time) of using change partition.

The questions asked in the user study might not be complete

for general code review practice. However, we conceived

all code review questions following the guidelines from lit-

erature [5], [21], [13] to maximize their representativeness.

Another threat is that the participants in our study may not

well represent the population of real developers.

Our user study results might have been affected by the

differences between individual participants. We minimized

this threat by adopting a within-group design [19], such that

each participant was exposed to both the by file and by slice
treatments. In addition, we conducted a pilot survey to evenly

divide participants according to their expertise.

Finally, the user study results may have been susceptible to

the impact of learning effects [19]. We minimized this threat

by assigning different orders of treatments to participants (i.e.,

group-1 used by slice in the first session while group-2 used

by file first, as shown in Table IV). We also provided a tutorial

of both treatments prior to the study.

VIII. RELATED WORK

A. Describing Code Changes

Various techniques have been proposed to help develop-

ers answer the “what is changed” question. ChangeDistiller

compares the abstract syntax trees of two program versions

to extract fine-grained syntax changes [11]. The DeltaDoc

algorithm explains a program change by differentiating the

program’s symbolic execution before and after the change

to generate descriptions readable by humans [26]. These

techniques are applied directly to an entire code change, which

is considered as an inseparable unit by default. However, we

have empirically showed that this is not always the case.

B. Separating Concerns from Code Changes

The existence and prevalence of composite code changes

have recently been recognized by the research community.

Murphy-Hill et al. provided empirical evidence that the ma-

jority of refactorings are in fact floss refactorings, which mix

refactorings with other types of development activities [27].

Kawrykow and Robillard reported that up to 15.5% of method

updates are merely non-essential modifications such as local

variable refactorings [14]. Herzig and Zeller reported that

between 6% and 15% of bug fixes address multiple con-

cerns [28]. Complementary to their findings, we conducted

a manual investigation of code changes that are not limited to

bug-fixing and refactorings.

Several studies have aimed at separating concerns from code

changes. DiffCat distinguishes non-essensial and non-trivial

changes in a single commit [14]. LSdiff characterizes a code

change by a list of logical rules and exceptions [13]. Licata

et al. characterized a change by its feature signature, which is

derived from test suite executions [29]. Collard et al. proposed

difffact, which allows users to specify the type and location of

changes to be filtered out from a large change [30].

188

Herzig and Zeller developed an approach to untangle non-

atomic bug-fixing changes [28]. Their work mainly differs

from ours in that their goal was to improve mining-software-

archive research by removing noises from bug-fixing changes.

Therefore, they evaluated the impact of non-atomic bug-

fixes on labeling defect-prone instances. We instead partition

changes to facilitate code review, which is mainly evalu-

ated through our user study. In addition, Herzig and Zeller

created artificially tangled changes as input and evaluated

their approach based on partial match. We instead used real

code changes and evaluated our approach using exact match

(Section IV-A). In terms of the approach itself, Herzig and

Zeller also used heuristics such as file distance and change

coupling to untangle changes. We plan to compare their

approach with ours and merge useful heuristics if necessary.

Independently from us, Barnett et al. proposed CLUS-

TERCHANGES that automatically decomposes changesets to

help code review [31]. This tool leverages def-use infor-

mation exclusively on the additions and modifications of a

changeset [31]. However, our approach uses three heuristics,

including static dependency, to partition an entire change

including code deletions. In addition, Barnett et al. interviewed

developers to assess their tool’s usefulness in code review,

while we conducted controlled experiments involving actual

usages of partition results and code review tasks to this end.

C. Program Slicing on Code Comprehension

Although static program slicing was originally proposed to

facilitate debugging [6], it was later found useful in many

other applications such as testing, validation, program paral-

lelization, and reverse engineering [32], [33]. Static slicing has

also been applied to program comprehension, which is closely

related to our work. Gallagher and Lyle introduced decomposi-
tion slice, which captures all computations on a given variable

independent of program points, to help developers understand

the semantic contexts of maintenance tasks [34]. De Lucia et

al. proposed conditioned slicing as a general framework for

program comprehension [10]. Komondoor and Horwitz used

program dependence graphs and program slicing to identify

code duplication, alleviating the difficulty caused by duplicate

code in program understanding [35]. Different from theirs, our

work leverages program slicing to partition composite code

changes and aid code review.

IX. CONCLUSIONS

“More is not always better.” When multiple development

issues are addressed in a code change, reviewing this change

can be difficult and error-prone. We propose an approach to

partition such composite code changes into change-slices so

that each change-slice is more semantically cohesive. In an

evaluation on 78 real composite code changes, our approach

partitions 54 (69%) of them the same way as human evalu-

ators manually did. Our user study further shows that when

composite code changes are properly partitioned, participants’

code review effectiveness is significantly improved.

As future work, we plan to incorporate change rule mining

and non-essential change detection techniques into our change-

partition approach. Meanwhile, we plan to conduct a more

thorough user study to also investigate the potential impact of

unsatisfactory change partitions on code review.

ACKNOWLEDGMENT

We thank all the students that participated in our user study.

We especially thank Tao He and Hai Wan for their kind help

of arranging the user study. We also thank Ananya Kanjilal

for her comments on the early draft of this paper.

REFERENCES

[1] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” Software Engineering, IEEE Transactions on, vol. 35,
no. 5, pp. 684–702, 2009.

[2] H. C. Benestad, B. Anda, and E. Arisholm, “Understanding software
maintenance and evolution by analyzing individual changes: a literature
review,” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 21, no. 6, pp. 349–378, 2009. [Online]. Available:
http://dx.doi.org/10.1002/smr.412

[3] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 35th international
conference on Software engineering, ser. ICSE ’13, 2013.

[4] P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey,
“Peer review on open-source software projects: Parameters,
statistical models, and theory,” ACM Trans. Softw. Eng. Methodol.,
vol. 23, no. 4, pp. 35:1–35:33, Sep. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2594458

[5] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: an exploratory study in industry,”
in Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, ser. FSE ’12. New
York, NY, USA: ACM, 2012, pp. 51:1–51:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393656

[6] M. Weiser, “Programmers use slices when debugging,” Commun.
ACM, vol. 25, no. 7, pp. 446–452, Jul. 1982. [Online]. Available:
http://doi.acm.org/10.1145/358557.358577

[7] G. Canfora, A. Cimitile, A. De Lucia, and G. Di Lucca, “Decomposing
legacy programs: a first step towards migrating to client-server plat-
forms,” in Program Comprehension, 1998. IWPC ’98. Proceedings., 6th
International Workshop on, 1998, pp. 136–144.

[8] K. Gallagher and J. Lyle, “Using program slicing in software mainte-
nance,” Software Engineering, IEEE Transactions on, vol. 17, no. 8, pp.
751–761, 1991.

[9] F. Lanubile and G. Visaggio, “Extracting reusable functions by flow
graph based program slicing,” Software Engineering, IEEE Transactions
on, vol. 23, no. 4, pp. 246–259, 1997.

[10] A. De Lucia, A. Fasolino, and M. Munro, “Understanding function
behaviors through program slicing,” in Program Comprehension, 1996,
Proceedings., Fourth Workshop on, 1996, pp. 9–18.

[11] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Trans. Softw. Eng., vol. 33, no. 11, pp. 725–743, Nov. 2007. [Online].
Available: http://dx.doi.org/10.1109/TSE.2007.70731

[12] T.J.Watson Libraries for Analysis. [Online]. Available:
http://wala.sourceforge.net

[13] M. Kim and D. Notkin, “Discovering and representing systematic
code changes,” in Proceedings of the 31st International Conference
on Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 309–319. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070531

[14] D. Kawrykow and M. P. Robillard, “Non-essential changes in
version histories,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New
York, NY, USA: ACM, 2011, pp. 351–360. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985842

[15] B. Cornelissen, A. Zaidman, and A. van Deursen, “A controlled experi-
ment for program comprehension through trace visualization,” Software
Engineering, IEEE Transactions on, vol. 37, no. 3, pp. 341–355, 2011.

189

[16] C. Lange and M. R. V. Chaudron, “Interactive views to improve the
comprehension of uml models - an experimental validation,” in Program
Comprehension, 2007. ICPC ’07. 15th IEEE International Conference
on, 2007, pp. 221–230.

[17] J. Quante, “Do dynamic object process graphs support program under-
standing? - a controlled experiment.” in Program Comprehension, 2008.
ICPC 2008. The 16th IEEE International Conference on, 2008, pp. 73–
82.

[18] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano,
and P. Tonella, “The effectiveness of source code obfuscation: An
experimental assessment,” in Program Comprehension, 2009. ICPC ’09.
IEEE 17th International Conference on, 2009, pp. 178–187.

[19] J. Lazar, J. H. Feng, and H. Hochheiser, Research Methods in Human-
Computer Interaction. John Wiley Sons, 2010.

[20] J.Nielsen. Time budgets for usability sessions. [Online]. Available:
http:// www.useit.com/alertbox/usability sessions.html

[21] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in Proceedings of the
14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. SIGSOFT ’06/FSE-14. New
York, NY, USA: ACM, 2006, pp. 23–34. [Online]. Available:
http://doi.acm.org/10.1145/1181775.1181779

[22] F. E. J. M. R. W. T. Eadie, D. Drijard and B. Sadoulet, Statistical
Methods in Experimental Physics.

[23] H. Levene, Robust tests for equality of variances. Stanford University
Press, 1960.

[24] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: a case study of the apache server,” in Proceedings
of the 30th international conference on Software engineering, ser.
ICSE ’08. New York, NY, USA: ACM, 2008, pp. 541–550. [Online].
Available: http://doi.acm.org/10.1145/1368088.1368162

[25] “Commit Often, Perfect Later, Publish Once: Git Best Practices,”
https://sethrobertson.github.io/GitBestPractices/, 2012.

[26] R. P. Buse and W. R. Weimer, “Automatically documenting
program changes,” in Proceedings of the IEEE/ACM international
conference on Automated software engineering, ser. ASE ’10. New
York, NY, USA: ACM, 2010, pp. 33–42. [Online]. Available:
http://doi.acm.org/10.1145/1858996.1859005

[27] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and
how we know it,” in Proceedings of the 31st International Conference
on Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 287–297. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070529

[28] K. Herzig and A. Zeller, “The impact of tangled code
changes,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, ser. MSR ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 121–130. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487085.2487113

[29] D. Licata, C. Harris, and S. Krishnamurthi, “The feature signatures
of evolving programs,” in Automated Software Engineering, 2003.
Proceedings. 18th IEEE International Conference on, 2003, pp. 281–
285.

[30] M. L. Collard, H. Kagdi, and J. I. Maletic, “Factoring differences
for iterative change management,” in Proceedings of the Sixth IEEE
International Workshop on Source Code Analysis and Manipulation, ser.
SCAM ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp.
217–226. [Online]. Available: http://dx.doi.org/10.1109/SCAM.2006.15

[31] M. Barnett, C. Bird, J. Brunet, and S. Lahiri, “Helping
developers help themselves: Automatic decomposition of code
review changesets.” in Proceedings of the 37th International
Conference on Software Engineering, May 2015. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=238937

[32] A. De Lucia, “Program slicing: methods and applications,” in Source
Code Analysis and Manipulation, 2001. Proceedings. First IEEE Inter-
national Workshop on, 2001, pp. 142–149.

[33] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A
brief survey of program slicing,” SIGSOFT Softw. Eng. Notes,
vol. 30, no. 2, pp. 1–36, Mar. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1050849.1050865

[34] K. B. Gallagher and J. R. Lyle, “Using program slicing in software
maintenance,” IEEE Transactions on Software Engineering, vol. 17, pp.
751–761, 1991.

[35] R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in Proceedings of the 8th International Symposium on

Static Analysis, ser. SAS ’01, London, UK, 2001, pp. 40–56.

190

